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Modern Al is hungry for data!
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However each datapoint does not contribute equally

GIF obtained from KITTI-360 dataset (Lico et al., 2022)



However each datapoint does not contribute equally




However each datapoint does not contribute equally

Concordant with previous empirical results —

Nakkiran et al., 2021; Guo et al.,, 2022; Yang et al.,
2022; Sorscher et al,, 2022; Gadre et al.,, 2024, ...




However each datapoint does not contribute equally

even In simple cases

13%:- ‘ - == [U|| data
\\ —o== Random sampling
U 12%1
© \
ad \
- °
110 |
O /o AN higher
I \
o test error
= 10%:- ..
7 S
g 9% - '\\\ fewer training samples
.LL.) ’.h
Z ..-—-.----.~-
e e e e ———— L T_F =
20% 40% 60% 80%

Percentage of data subsampled

full-sample

! error



However each datapoint does not contribute equally

‘Smart”

subsampling beats
random.

even In simple cases
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However each datapoint does not contribute equally

Full performance

after throwing away
65% of the dataset

Misclassification Rate

even In simple cases
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However each datapoint does not contribute equally

13%

Full performance

even In simple cases
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(Informal) Setup

Main features

Two-step procedure:
selection followed by training

Weakly Supervised — no
access to data labels during
selection but access to a
‘surrogate model”

Score-based subselection:
‘easy” or “hard” to classity

Sample or select points based
ON SCores

Data (unlabeled)
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(Informal) Setup

Main features

Two-step procedure:
selection followed by training

Weakly Supervised — no
access to data labels during
selection but access to a
‘surrogate model”

Score-based subselection:
“easy” or “hard” to classify

Sample or select points based
ON SCOres

Data (unlabeled) Data + Score Ranked data
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(Informal) Setup

Data scoring
network
Data (unlabeled)
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Two-step procedure:
selection followed by training

Weakly Supervised — no
access to data labels during
selection but access to a
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Formally

Weighted empirical risk minimization (ERM)

A\

6 = arg min IAQN(H)
¢

) 1 «
R\(0) = ~ Z Six) £ (v, f(x;:0)) +1Q(0)
=1

Subsection scheme §;(x;) is defined by tuple (r;, w,)

PGe G|X,y)=nx)., Sx)=wkx)]l,_;
(7;, w;) can depend on
(i) featuresx:;

(if) surrogate model P (- |x;)
(il) additional independent randomness.

1. Biased vs Unbiased subsampling

Unbiased loss function post subsampling:

w;, x 1/x;

2. High vs Low-dim asymptotic

Proportional high-dimension asymptotics:

n,N,p > o
n/N -y, Nip = ¢,

3. Imperfect vs Perfect Surrogates

Perfect Surrogate:
Psu(- |x) =P(- |x))
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Setup: numerical results

Binary
logistic regression




Setup: numerical results

Binary
logistic regression

Subselection Scheme

m(x;) o <psu X (1 —psu) >a

Probability under
surrogate model
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Setup: numerica

Binary
logistic regression

Psu X (1 — psy)

Subselection Scheme
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Setup: numerical results

Binary
logistic regression

Subselection Scheme

m(x;) o <psu X (1 —psu) >a

a determines hardness:

o > 0 upsample hard points
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Setup: numerical results

Binary Subselection Scheme
logistic regression )
ﬂ(xi> X <psu X (1 _psu)>

Synthetic Data Real Data: AV dataset

Isotropic Gaussian Covariates:

GLM (well- or mis-specified):

P(y, =+ 1|x) =£((0,, x;))




Theory predicts “exact”
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Theory predicts “exact” high-dim asymptotic test-error

Simple setup surprisingly demonstrates

many interesting phenomena!
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1. Unbiased subsampling can be suboptimal

Real data:
AV dataset

Proposition

Under certain natural settings we
nave multiple theorems and
specific constructions showing
unbiased subsampling can be
arbitrary worse.
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2. Choose “hard” but not the “hardest”

Real data: 23%- ! — — Full data
AV dataset \ —"+ Easy topK
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3. In high-dim settings choosing “easy”is better

Synthetic data

Observation

Blue curve (negative alpha), |
upsampling easy examples,
oerforms best for all settings
(across regularizations and S
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*corroborates Sorscher et al., 2022
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4. Better surrogate models != better selection

Real data: 500! % — = Full data
AV dataset o Weak
= —  Medium
ad - Strong
C 18%:-
Observation S —e= Random sampling
.I(_UJ
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>
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5. Subsampling can beat full-sample training

Synthetic data

Intuition

Observed in case of mis-specifi
models (true data does not fol
logistic distribution).

Not all data samples provide new
information when machine
learning models and losses are
mismatched!
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THIS 15 YOUR MACHINE LEARNING SYSTET?
" YOP! YoU POUR THE DATA INTO THIS BIG

Conclusions PLECF DR LCEORA, BN GLLET

WHAT IF THE ANSLERS ARE LJRONG? )

JUST STIR THE PILE UNTIL
THEY START LOOKING RIGHT:

Surprises

Popular technigues using “unbiased” subsampling can be suboptimal

Use of “weaker” surrogate models can outperform stronger surrogate models
Main Insight

Uncertainty based subsampling can be effective though

choosing “hardest” examples can be catastrophic

depending on setting such as parameterization ratio, regularization, mis-specification;
‘easy” examples can be more beneficial than hard examples*

Dont stir the pile

30
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Test
Error

= Jnbiased
= Non-reweighted
= Optimal

n/N

using H™1

using Hy1HH 1

Questions?!

n=N(=989)

n=400

n=200

31



