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Theme of the talk

Good functional dependence + low gradient variance → good empirical
performance.

• Continuous normalizing flows were originally trained to maximize the likelihood of
training samples using the adjoint method (highly non-convex functional
landscape).

• Diffusion models: least-squares loss to learn score function (convex functional
landscape).

• Currently, stochastic optimal control is solved relying on the adjoint method
(highly non-convex functional landscape).

• Our work is about developing a least-squares loss for stochastic optimal control.
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Stochastic optimal control

• Control: we want to ’control’ a system (e.g. driving a car or managing
investments) to achieve a desired outcome or behavior.

• Optimal Control: When driving from point A to B, the ’optimal’ path would be
the one that minimizes time and fuel.

• Stochastic Optimal Control: The systems or processes are random and
unpredictable; we need to be robust to noise.
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Example I: Robotics

Figure 1: Sources: [FB21; Fre+21]

• Goal: move the robot from an initial position to a final one to accomplish a task

• Controls: torque applied by joints, force applied by linear actuators

• Optimality: accomplish the task using minimal energy

• Stochasticity: sensor noise, unexpected user behavior, variable conditions
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Uncontrolled process vs. controlled process

Uncontrolled process
dXt = b(Xt , t) dt +

√
λσ(t)dBt , X0 ∼ p0.

where:

• X : [0,T ] → Rd is the (random) uncontrolled process
Robot Example (RE): angles and angular velocities of each joint of the robot

• b : Rd × [0,T ] → R is the base drift,
RE: encodes Newtonian mechanics

• λ ∈ R is the noise variance and σ : [0,T ] → Rd×d is the covariance matrix.
RE: models stochastic behavior

Controlled process
dX u

t = (b(X u
t , t) + σ(t)u(X u

t , t)) dt +
√
λσ(t)dBt , X u

0 ∼ p0.

where:

• u : Rd × [0,T ] → Rd is the control
Robot Example (RE): torque (force) applied to each joint of the robot
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Stochastic optimal control: the problem

Stochastic Optimal Control problem

min
u

E
[ ∫ T

0

(
1
2
∥u(X u

t , t)∥2 + f (X u
t , t)

)
dt + g(X u

T )

]
,

subject to dX u
t = (b(X u

t , t) + σ(t)u(X u
t , t)) dt +

√
λσ(t)dBt , X u

0 ∼ p0.

where

• u : Rd × [0,T ] → Rd is the control
Robot Example (RE): torque (force) applied to each joint of the robot

• X u : [0,T ] → Rd is the (random) controlled process
RE: angles and angular velocities of each joint

• f : Rd × [0,T ] → R is the state cost,
RE: small for physically possible configurations, very large for impossible ones

• g : Rd → R is the terminal cost,
RE: small for desired final configuration, very large otherwise

• b : Rd × [0,T ] → R is the base drift,
RE: encodes Newtonian mechanics

• λ ∈ R is the noise variance and σ : [0,T ] → Rd×d is the covariance matrix.
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Example II: Sampling from unnormalized densities

Reminder: Stochastic Optimal Control problem

min
u

E
[ ∫ T

0

(
1
2
∥u(X u

t , t)∥2 + f (X u
t , t)

)
dt + g(X u

T )

]
,

subject to dX u
t = (b(X u

t , t) + σ(t)u(X u
t , t)) dt +

√
λσ(t)dBt , X u

0 ∼ p0.

• Challenge: Given a function g : Rd → R such that
∫
Rd e−g(x) dx < +∞, generate

samples from the distribution π(x) ∝ e−g(x).
• Applications in Bayesian statistics (sampling from posterior) and computational

physics (free energy computations).
• Common approach: MCMC algorithms. Issue: They struggle with multimodality.
• Stochastic optimal control approach:

− Let b(x , t) = x be an arbitrary base drift and T ≫ 1.
− Set g as the terminal cost.
− Set −∇ · b as the state cost.

Then, X u
T ∼ π ∝ e−g(x).

• Intuition: Forward-backward SDE processes.
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Example II: Sampling from unnormalized densities
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• Intuition: Forward-backward SDE processes.

10



Example III: Importance sampling for diffusions [Zha+14]

We want to estimate the probability that the process X satisfying
dXt = b(Xt , t) dt + σ(t) dBt , X0 = x0 will go through the top hole, i.e. P(XT ∈ O).

Very unlikely event! Monte Carlo estimation is high-variance. In general, we want to
estimate:

E
[
exp

(
−

∫ T
0 f (Xt , t) dt − g(XT )

)]
. (1)

We recover P(XT ∈ O) by setting f (x , t) = 0, g(x) = − log1O(x). We need to
perform importance sampling using a process that goes through the top hole often!
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Example III: Importance sampling for diffusions [Zha+14]

• Let

F (X ) = exp

(
−

∫ T

0
f (Xt , t) dt − g(Xτ∧T )

)
.

• Importance sampling: Estimate E[F (X )] using a Monte Carlo estimate of
E[F (X u) dP

dPu (X
u)], where

− u is arbitrary,
− X u is a solution of dX u

t = (b(X u
t , t) + σ(t)u(X u

t , t)) dt + σ(t) dBt , X u
0 = x0,

− P, Pu are the laws of X and X u ,
− dP

dPu (X
u) is computed using the Girsanov theorem.

• The control u that minimizes the variance Var[F (X u) dP
dPu (X

u)] achieves zero
variance, and is the solution of:

Stochastic Optimal Control problem

min
u

E
[ ∫ T

0

(
1
2
∥u(X u

t , t)∥2 + f (X u
t , t)

)
dt + g(X u

T )

]
,

subject to dX u
t = (b(X u

t , t) + σ(t)u(X u
t , t)) dt +

√
λσ(t)dBt , X u

0 = x0.
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Existing approaches for Stochastic Optimal Control

Reminder: Stochastic Optimal Control problem

min
u∈U

L(u) ≜ E
[ ∫ T

0

(
1
2
∥u(X u

t , t)∥2 + f (X u
t , t)

)
dt + g(X u

T )

]
, (2)

subject to dX u
t = (b(X u

t , t) + σ(t)u(X u
t , t)) dt +

√
λσ(t)dBt , X u

0 ∼ p0. (3)

• Dimension d small (d ≤ 3): solve the Hamilton-Jacobi-Bellman (HJB) partial
differential equation using dynamic programming [Bel57].

• Dimension d higher: the state-of-the-art approach, which is also classical [Pon62;
Onk+23; NR23], is the adjoint method :

- Parameterize the control with a neural network u ≡ uθ
- Simulate a batch of trajectories of the SDE (3) to approximate the control

objective L(u)
- Compute the gradient of the approximate control objective w.r.t. θ
- Update θ using a stochastic optimization algorithm (e.g. Adam)
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The adjoint method has unstable training dynamics

L2 error for control u: Et,Xu∗ ∥u(X u∗
t , t)− u∗(X u∗

t , t)∥2, where u∗ is the optimal
control

Why? Because the adjoint loss is highly non-convex w.r.t. the control u!

min
u

E
[ ∫ T

0

(
1
2
∥u(X u

t , t)∥
2 + f (X u

t , t)

)
dt + g(X u

T )

]
, s.t.

{
dX u

t =(b(X u
t , t)+u(X u

t , t))dt+
√
λdBt ,

X u
0 ∼ p0.

Can we design algorithms with stable training?
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Detour: Maximum Likelihood Normalizing Flows vs. Diffusion Models

We’ve seen a similar story in generative modeling...

• Continuous Normalizing Flows (CNFs) [Che+18]: originally trained to maximize
the log-likelihood of the generated samples, using the adjoint method.

min
v

E
[
− log p0(X

v
0 ) +

∫ 1

0
∇ · v t(X

v
t ) dt

]
, s.t.

{
dX v

t =v(X v
t , t)dt,

X v
0 ∼ p0.

• This loss is highly non-convex w.r.t v !

• Diffusion models superseded maximum likelihood CNFs, and require solving least
squares problems:

DDPM [HJA20]: minv Et,X0,X1∥vt(e−tX1 +
√

1 − e−2tX0)− X0∥2 (4)

• This loss is convex with respect to v !
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From non-convex to convex landscapes

Task
Non-convex

functional landscape
Least squares

functional landscape

Generative modeling
Maximum

Likelihood CNFs
Diffusion models,
Flow Matching

Stochastic optimal control Adjoint method ?
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Task
Non-convex

functional landscape
Least squares

functional landscape

Generative modeling
Maximum

Likelihood CNFs
Diffusion models,
Flow Matching

Stochastic optimal control Adjoint method
Stochastic Optimal

Control Matching (ours)
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SOCM: a least squares loss for stochastic control

Stochastic Optimal Control problem

min
u∈U

L(u) ≜ E
[ ∫ T

0

(
1
2
∥u(X u

t , t)∥2 + f (X u
t , t)

)
dt + g(X u

T )

]
,

subject to dX u
t = (b(X u

t , t) + σ(t)u(X u
t , t)) dt +

√
λσ(t)dBt , X u

0 ∼ p0.y
Stochastic Optimal Control Matching (SOCM) [Dom+23]

min
u,M

L(u,M) ≜ Et,X v
[
∥u(X v

t , t)− w(t, v ,X v ,M)∥2α(v ,X v )
]
,

where

• u : Rd × [0, 1] → Rd is the control

• v is a fixed arbitrary control, X v is the solution of the SDE with control v

• M : [0, 1]2 → Rd×d is the reparameterization matrix

• w is the matching vector field

• α is the importance weight

w and α depend on f , g , λ, σ (full expressions later on).
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Some details on SOCM

Stochastic Optimal Control Matching (SOCM) [Dom+23]

min
u,M

L(u,M) ≜ Et,X v
[
∥u(X v

t , t)− w(t, v ,X v ,M)∥2α(v ,X v )
]
,

• How to derive SOCM? The optimal control admits an analytic expression as the
score (gradient of logarithm) of an unnormalized density! Similar to score-based
diffusion.

• Key idea: path-wise reparameterization trick, a novel technique to reexpress the
gradient of a conditional expectation.

• What is the role of the reparameterization matrix M?

L(u,M) = Et,X v
[
∥u(X v

t , t)− u∗(X v
t , t)∥2α(v ,X v ,B)

]︸ ︷︷ ︸
L2 error of u

+ Et,X v

[∥∥∥∥w(t, v ,X v ,B,Mt)−
E[w(t, v ,X v ,B,Mt)α(v ,X v ,B)|t,X v

t ]

E[α(v ,X v ,B)|t,X v
t ]

∥∥∥∥2
α(v ,X v ,B)

]
︸ ︷︷ ︸

Conditional variance of w

We train M to minimize the conditional variance of the matching vector field w .

• How do we choose v? We want v such that α(v ,X v ) has low variance. In
general, we take v to be the current learned control u.
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Experiments: settings, baselines and ablations

Settings:

• Quadratic Ornstein Uhlenbeck / Linear Quadratic Regulator: Linear base drift b,
quadratic state cost f , quadratic terminal cost g

• Linear Ornstein Uhlenbeck: Linear base drift b, quadratic state cost f , linear
terminal cost g

• Double Well: terminal cost g is minus log-density of high-dimensional double well
(2d modes).

Baselines:

• Adjoint method [Pon62]
• Cross-entropy loss [Zha+14]
• Log-variance loss [NR23]
• Variance loss [NR23]
• Moment loss [WHJ17; HJE18]

Ablations:

• SOCM with constant Mt = Id
• SOCM-Adjoint: modification of SOCM where the adjoint method is used instead

of the path-wise reparameterization trick
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Experiments: Control L2 error

Control L2 error: Et,X v
[
∥u(X v

t , t)− u∗(X v
t , t)∥2α(v ,X v ,B)

]
/Et,X v

[
α(v ,X v ,B)

]
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Experiments: Importance weight variance

Importance weight variance: Var[α(u,X u,B)]/E[α(u,X u,B)] = Var[F (X u) dP
dPu (X

u)]
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Experiments: Training loss for SOCM and ablations

L(u,M) = L2 error of u + Conditional variance of w
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Derivation of the SOCM loss (1/3)

Reminders:

• X u is the process controlled by u; it is the solution of
dX u

t = (b(X u
t , t) + σ(t)u(X u

t , t)) dt +
√
λσ(t)dBt , X u

0 ∼ p0.

• X is the uncontrolled process; it is the solution of
dXt = b(Xt , t) dt +

√
λσ(t)dBt , X0 ∼ p0.

Lemma (Path-integral representation of the optimal control)

The optimal control u∗ satisfies
u∗(x , t)=λσ(t)⊤∇x logE

[
exp

(
− λ−1 ∫ T

t f (Xs , s)ds − λ−1g(XT )
)∣∣Xt = x

]
. (5)

Consider the loss
L̃(u) = E

[ 1
T

∫ T
0

∥∥u(Xt , t)− u∗(Xt , t)
∥∥2 dt exp

(
− λ−1 ∫ T

0 f (Xt , t)dt − λ−1g(XT )
)]

= E
[ 1
T

∫ T
0

(∥∥u(Xt , t)
∥∥2 − 2⟨u(Xt , t), u∗(Xt , t)⟩+ ∥u∗(Xt , t)

∥∥2) dt

× exp
(
− λ−1 ∫ T

0 f (Xt , t) dt − λ−1g(XT )
)]
.

The only optimum of this loss is u∗. Using equation (5), the cross-term can be
rewritten as:
E
[ 1
T

∫ T
0 ⟨u(Xt , t), u∗(Xt , t)⟩ dt exp

(
− λ−1 ∫ T

0 f (Xt , t)dt − λ−1g(XT )
)]

= −λE
[ 1
T

∫ T
0

〈
u(Xt , t), σ(t)⊤∇xE

[
exp

(
− λ−1 ∫ T

t f (Xs , s)ds − λ−1g(XT )
)∣∣Xt = x

]〉
dt

× exp
(
− λ−1 ∫ t

0 f (Xs , s)ds
)]
.
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Derivation of the SOCM loss (2/3)

To evaluate the derivative of the conditional expectation, we use:

Proposition (Path-wise reparameterization trick for stochastic optimal control)

For each t ∈ [0,T ], let Mt : [t,T ] → Rd×d be an arbitrary continuously
differentiable function matrix-valued function such that Mt(t) = Id. We have that

∇xE
[
exp

(
− λ−1 ∫ T

t f (Xs , s) ds − λ−1g(XT )
)∣∣Xt = x

]
= E

[(
− λ−1 ∫ T

t Mt(s)∇x f (Xs , s)ds − λ−1Mt(T )∇g(XT )

+ λ−1/2 ∫ T
t (Mt(s)∇xb(Xs , s)− ∂sMt(s))(σ−1)⊤(Xs , s)dBs

)
× exp

(
− λ−1 ∫ T

t f (Xs , s) ds − λ−1g(XT )
)∣∣Xt = x

]
.

(6)

Using (6) and completing the square, we obtain that for some constant K independent
of u,
L̃(u) = E

[ 1
T

∫ T
0

∥∥u(Xt , t) + σ(t)
( ∫ T

t Mt(s)∇x f (Xs , s) ds +Mt(T )∇g(XT )

− λ1/2 ∫ T
t (Mt(s)∇xb(Xs , s)− ∂sMt(s))(σ−1)⊤(Xs , s)dBs

)∥∥2 dt

× exp
(
− λ−1 ∫ T

0 f (Xt , t) dt − λ−1g(XT )
)]

+ K .

If we perform a change of process from X to X v by applying the Girsanov theorem,
where v is arbitrary, we obtain the loss LSOCM(u,M).
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Derivation of the SOCM loss (3/3)

Stochastic Optimal Control Matching (SOCM) [Dom+23]

min
u,M

L(u,M) ≜ Et,X v
[
∥u(X v

t , t)− w(t, v ,X v ,M)∥2α(v ,X v )
]
,

w(t, v ,X v ,M) = −
∫ T

t
M(t, s)∇x f (X

v
s , s) ds −M(t,T )∇g(X v

T )

−
∫ T

t
(M(t, s)∇xb(X

v
s , s)− ∂sM(t, s))v(X v

s , s) ds

−
√
λ

∫ T

t
(M(t, s)∇xb(X

v
s , s)− ∂sM(t, s)) dBs ,

α(v ,X v ) = exp

(
−

1
λ

∫ T

0
f (X v

t , t) ds −
1
λ
g(X v

T )

−
1
√
λ

∫ T

0
⟨v(X v

t , t), dBt⟩ −
1
2λ

∫ T

0
∥v(X v

t , t)∥2 dt

)
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Future directions within stochastic optimal control

Applications of SOCM

• Test and benchmark SOCM as an algorithm to sample from unnormalized
densities

• Test and benchmark SOCM as an importance sampling algorithm for stopped
diffusions (more in backup slides)

Technical improvements of SOCM

• Make reparameterization matrix M depend to the controlled process X v .

• Test alternative way to use Girsanov theorem to lower the gradient variance when
learning controls: explicit perturbations ψ. It can be combined with the path-wise
reparameterization trick and also applied to other methods like the adjoint,
cross-entropy, log-variance...
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Future applications of the path-wise reparameterization trick

PWRT for diffusion processes

• The PWRT can be used to generalize conditional score matching to diffusion
processes with generic drifts.

• I.e., we can learn ∇ log pt for X s.t. dXt = b(Xt , t) dt + σ(t) dBt using a
least-squares loss (previously only implicit score matching was available).

• When we set a linear drift b(x , t) = −A(t)x , we recover standard conditional
score matching.

PWRT for Neural SDEs

• Reminder: Neural SDEs are the SDE analog of Neural ODEs, they use the adjoint
method.

• We can replace the adjoint method by PWRT.

29



Future applications of the path-wise reparameterization trick

PWRT for diffusion processes

• The PWRT can be used to generalize conditional score matching to diffusion
processes with generic drifts.

• I.e., we can learn ∇ log pt for X s.t. dXt = b(Xt , t) dt + σ(t) dBt using a
least-squares loss (previously only implicit score matching was available).

• When we set a linear drift b(x , t) = −A(t)x , we recover standard conditional
score matching.

PWRT for Neural SDEs

• Reminder: Neural SDEs are the SDE analog of Neural ODEs, they use the adjoint
method.

• We can replace the adjoint method by PWRT.

29



Future applications of the path-wise reparameterization trick

PWRT for diffusion processes

• The PWRT can be used to generalize conditional score matching to diffusion
processes with generic drifts.

• I.e., we can learn ∇ log pt for X s.t. dXt = b(Xt , t) dt + σ(t) dBt using a
least-squares loss (previously only implicit score matching was available).

• When we set a linear drift b(x , t) = −A(t)x , we recover standard conditional
score matching.

PWRT for Neural SDEs

• Reminder: Neural SDEs are the SDE analog of Neural ODEs, they use the adjoint
method.

• We can replace the adjoint method by PWRT.

29



Future applications of the path-wise reparameterization trick

PWRT for diffusion processes

• The PWRT can be used to generalize conditional score matching to diffusion
processes with generic drifts.

• I.e., we can learn ∇ log pt for X s.t. dXt = b(Xt , t) dt + σ(t) dBt using a
least-squares loss (previously only implicit score matching was available).

• When we set a linear drift b(x , t) = −A(t)x , we recover standard conditional
score matching.

PWRT for Neural SDEs

• Reminder: Neural SDEs are the SDE analog of Neural ODEs, they use the adjoint
method.

• We can replace the adjoint method by PWRT.

29



Future applications of the path-wise reparameterization trick

PWRT for diffusion processes

• The PWRT can be used to generalize conditional score matching to diffusion
processes with generic drifts.

• I.e., we can learn ∇ log pt for X s.t. dXt = b(Xt , t) dt + σ(t) dBt using a
least-squares loss (previously only implicit score matching was available).

• When we set a linear drift b(x , t) = −A(t)x , we recover standard conditional
score matching.

PWRT for Neural SDEs

• Reminder: Neural SDEs are the SDE analog of Neural ODEs, they use the adjoint
method.

• We can replace the adjoint method by PWRT.

29



Informal derivation of the path-wise reparameterization trick (1/2)

Consider the Euler-Maruyama discretization X̂ = (X̂k )k=0:K of the uncontrolled
process X with K + 1 time steps (let δ = T/K be the step size):

X̂0 ∼ p0, X̂k+1 = X̂k + δb(X̂k , kδ) +
√
δλσ(kδ)εk , εk ∼ N(0, I ).

We can approximate

E
[
exp

(
− λ−1

∫ T

t
f (Xs , s) ds − λ−1g(XT )

)∣∣Xt = x
]

≈ E
[
exp

(
− λ−1δ

K−1∑
k=0

f (X̂k , s)− λ−1g(X̂K )
)∣∣X̂0 = x

]
,

Remark that for k ∈ {0, . . . ,K − 1}, X̂k+1|X̂k ∼ N(X̂k + δb(X̂k , kδ), δλ(σσ
⊤)(kδ)).

Hence,
E
[
exp

(
− λ−1δ

∑K−1
k=0 f (X̂k , s)− λ−1g(X̂K )

)∣∣X̂0 = x
]

= C−1 s
(Rd )K exp

(
− λ−1δ

∑K−1
k=0 f (x̂k , s)− λ−1g(x̂K )

− 1
2δλ

∑K−1
k=1 ∥σ−1(kδ)(x̂k+1−x̂k−δb(x̂k , kδ))∥2

− 1
2δλ∥σ

−1(0)(x̂1−x−δb(x , 0))∥2)dx̂1 · · · dx̂K ,

(7)

where C =
√

(2πδλ)K
∏K−1

k=0 det((σσ⊤)(kδ)).
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Informal derivation of the path-wise reparameterization trick (2/2)

We can write
∇xE

[
exp

(
− λ−1δ

∑K−1
k=0 f (X̂k , s)− λ−1g(X̂K )

)
|X̂0 = x

]

= ∇zE
[
exp

(
− λ−1δ

∑K−1
k=0 f (X̂k , s)− λ−1g(X̂K )

)
|X̂0 = x + z

]
|z=0

= C−1∇z
(s

(Rd )K exp
(
− λ−1δ

∑K−1
k=0 f (x̂k , s)− λ−1g(x̂K )

− 1
2δλ

∑K−1
k=1 ∥σ−1(kδ)(x̂k+1−x̂k−δb(x̂k , kδ))∥2

− 1
2δλ∥σ

−1(0)(x̂1−(x+z)−δb(x+z, 0))∥2) dx̂1 · · · dx̂K
)
|z=0

= C−1∇z
(s

(Rd )K exp
(
−λ−1δ

∑K−1
k=0 f (x̂k + ψ(z, kδ), s)−λ−1g(x̂K + ψ(z,Kδ))

− 1
2δλ

∑K−1
k=1 ∥σ−1(kδ)(x̂k+1+ψ(z, (k+1)δ)−x̂k−ψ(z, kδ)−δb(x̂k+ψ(z, kδ), kδ))∥2

− 1
2δλ∥σ

−1(0)(x̂1+ψ(z, δ)−(x+ψ(z, 0))−δb(x+ψ(z, 0), 0))∥2) dx̂1 · · · dx̂K
)
|z=0,

• In the last equality, ψ : Rd × [0,T ] → Rd is an arbitrary twice differentiable
function such that ψ(z, 0) = z for all z ∈ Rd , and ψ(0, s) = 0 for all s ∈ [0,T ].

• We used that for k ∈ {1, . . . ,K}, the variables x̂k are integrated over Rd , which
means that adding an offset ψ(z, kδ) does not change the value of the integral.
We also used that ψ(z, 0) = z.

• To conclude the proof, we differentiate with respect to z under the integral sign,
and define M(s) = ∇ψ(z, s)|z=0.
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