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o Diffusion models: least-squares loss to learn score function (convex functional
landscape).

o Currently, stochastic optimal control is solved relying on the adjoint method
(highly non-convex functional landscape).

e Our work is about developing a least-squares loss for stochastic optimal control.
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o Control: we want to 'control’ a system (e.g. driving a car or managing
investments) to achieve a desired outcome or behavior.

e Optimal Control: When driving from point A to B, the 'optimal’ path would be
the one that minimizes time and fuel.

o Stochastic Optimal Control: The systems or processes are random and
unpredictable; we need to be robust to noise.
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Figure 1: Sources: [FB21; Fre+21]

e Goal: move the robot from an initial position to a final one to accomplish a task
o Controls: torque applied by joints, force applied by linear actuators
e Optimality: accomplish the task using minimal energy

e Stochasticity: sensor noise, unexpected user behavior, variable conditions
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We want to estimate the probability that the process X satisfying
dX: = b(X¢, t) dt + o(t) dBt, Xo = xo will go through the top hole, i.e. P(Xt € O).

Very unlikely event! Monte Carlo estimation is high-variance. In general, we want to
estimate:

Elexp (— J f(Xe,t)dt — g(X7))]. (1)
We recover P(X1 € O) by setting f(x,t) =0, g(x) = —log Lo(x). We need to
perform importance sampling using a process that goes through the top hole often!

11



Example Ill: Importance sampling for diffusions [Zha+14]

o Let

—exp ( / f Xt, dt T/\T))'

12



Example Ill: Importance sampling for diffusions [Zha+14]

o Let

F(X —exp< /th, £) dt — (MT)).

o Importance sampling: Estimate E[F(X)] using a Monte Carlo estimate of
I[*Z[F(X“)dLp>u (X")], where
— u is arbitrary,
X" is a solution of dX! = (b(X{!, t) + o(t)u(X}, t)) dt 4+ o(t) dBr, X§ = xo,
— ]P’ ]P’“ are the laws of X and XY,
dJPu (X”) is computed using the Girsanov theorem.

12



Example Ill: Importance sampling for diffusions [Zha+14]

o Let

F(X —exp< /th, £) dt — (MT)).

o Importance sampling: Estimate E[F(X)] using a Monte Carlo estimate of
I[*Z[F(X“)dLp>u (X")], where
— u is arbitrary,
— X" is a solution of dX}' = (b(X}!,t) +o(t)u(X{, t))dt +o(t)dB:, X5 = xo,
— ]P’ ]P’“ are the laws of X and XY,
— dJPu (X”) is computed using the Girsanov theorem.

o The control u that minimizes the variance Var[F(X")-Z,
variance, and is the solution of:

4pu (X)] achieves zero

12



Example Ill: Importance sampling for diffusions [Zha+14]

o Let

F(X —exp< /th, £) dt — (MT)).

o Importance sampling: Estimate E[F(X)] using a Monte Carlo estimate of
I[*Z[F(X“)dLp>u (X")], where
— u is arbitrary,
— X" is a solution of dX}' = (b(X}!,t) +o(t)u(X{, t))dt +o(t)dB:, X5 = xo,
— ]P’ ]P’“ are the laws of X and XY,
T (X4) is computed using the Girsanov theorem.

4o
o The control u that minimizes the variance Var[F(X")-Z,

4pu (X)] achieves zero

variance, and is the solution of:

Stochastic Optimal Control problem
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13



Existing approaches for Stochastic Optimal Control

Reminder: Stochastic Optimal Control problem
Tr1
min £00) £ 2| [ (F1u0x 0l + £x¢.0)) e+ £033)|. @
ueld 0 2
subject to dX¥ = (b(XH, t) + o(t)u(X, t)) dt + VAo (t)dBr, Xo ~po.  (3)

o Dimension d small (d < 3): solve the Hamilton-Jacobi-Bellman (HJB) partial
differential equation using dynamic programming [Bel57].

e Dimension d higher: the state-of-the-art approach, which is also classical [Pon62;
Onk+23; NR23], is the adjoint method:

13



Existing approaches for Stochastic Optimal Control

Reminder: Stochastic Optimal Control problem
Tr1

min £00) £ 2| [ (F1u0x 0l + £x¢.0)) e+ £033)|. @

ueld 0 2

subject to dX¥ = (b(XH, t) + o(t)u(X, t)) dt + VAo (t)dBr, Xo ~po.  (3)
o Dimension d small (d < 3): solve the Hamilton-Jacobi-Bellman (HJB) partial

differential equation using dynamic programming [Bel57].

e Dimension d higher: the state-of-the-art approach, which is also classical [Pon62;

Onk+23; NR23], is the adjoint method:

- Parameterize the control with a neural network u = uy

13



Existing approaches for Stochastic Optimal Control

Reminder: Stochastic Optimal Control problem

min £(s) 2 E[ / ! (Fhuxe. o2 + Foxe, r)) dr+g(><%)] )

subject to dX¥ = (b(XH, t) + o(t)u(X, t)) dt + VAo (t)dBr, Xo ~po.  (3)

o Dimension d small (d < 3): solve the Hamilton-Jacobi-Bellman (HJB) partial
differential equation using dynamic programming [Bel57].

e Dimension d higher: the state-of-the-art approach, which is also classical [Pon62;
Onk+23; NR23], is the adjoint method:
- Parameterize the control with a neural network u = uy

- Simulate a batch of trajectories of the SDE (3) to approximate the control
objective L£(u)

13



Existing approaches for Stochastic Optimal Control

Reminder: Stochastic Optimal Control problem

min £(s) 2 E[ / ! (Fhuxe. o2 + Foxe, r)) dr+g(><%)] )

subject to dX¥ = (b(XH, t) + o(t)u(X, t)) dt + VAo (t)dBr, Xo ~po.  (3)

o Dimension d small (d < 3): solve the Hamilton-Jacobi-Bellman (HJB) partial
differential equation using dynamic programming [Bel57].

e Dimension d higher: the state-of-the-art approach, which is also classical [Pon62;
Onk+23; NR23], is the adjoint method:
- Parameterize the control with a neural network u = uy
- Simulate a batch of trajectories of the SDE (3) to approximate the control

objective L£(u)

- Compute the gradient of the approximate control objective w.r.t. 6

13



Existing approaches for Stochastic Optimal Control

Reminder: Stochastic Optimal Control problem

min £(s) 2 E[ / ! (Fhuxe. o2 + Foxe, r)) dr+g(><%)] )

subject to dX¥ = (b(XH, t) + o(t)u(X, t)) dt + VAo (t)dBr, Xo ~po.  (3)

o Dimension d small (d < 3): solve the Hamilton-Jacobi-Bellman (HJB) partial
differential equation using dynamic programming [Bel57].

e Dimension d higher: the state-of-the-art approach, which is also classical [Pon62;
Onk+23; NR23], is the adjoint method:
- Parameterize the control with a neural network u = uy
- Simulate a batch of trajectories of the SDE (3) to approximate the control
objective L£(u)
- Compute the gradient of the approximate control objective w.r.t. 6
- Update 0 using a stochastic optimization algorithm (e.g. Adam)
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The adjoint method has unstable training dynamics
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Can we design algorithms with stable training?
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Detour: Maximum Likelihood Normalizing Flows vs. Diffusion Models

We've seen a similar story in generative modeling...

o Continuous Normalizing Flows (CNFs) [Che+18]: originally trained to maximize
the log-likelihood of the generated samples, using the adjoint method.

_ 1 dXy =v(X}, t)dt,
minE| — log po(Xg) +/ Vve(XY) dt|, s.t.
v 0 X(‘J/ ~ Po.
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From non-convex to convex landscapes

Task Non-convex Least squares
functional landscape functional landscape
Generative modelin Maximum Diffusion models,
1V I
. Likelihood CNFs Flow Matching

Stochastic optimal control Adjoint method ?
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SOCM: a least squares loss for stochastic control

Stochastic Optimal Control problem

min £(u) £ E[/OT (%Hu(Xt“, t)|? + F(X¢, t)) dt + g(X#)}

uel
subject to dX = (b(X!, t) 4+ o(t)u(X", t)) dt + VAo (t)dB:,  X§ ~ po.

l

Stochastic Optimal Control Matching (SOCM) [Dom+23]

m;\r) ‘C(uv M) = ]Et,XV [IIU(X!, t) - (t7 v, va M)“z(fl(V, Xv)]7
u,

where

u:RY x [0,1] — R is the control
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Some details on SOCM

Stochastic Optimal Control Matching (SOCM) [Dom-23]

min £(u, M) 2 B xv [lu(Xy, t) — w(t, v, X*, M)|Pa(v, X¥)],
u,
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2
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L2 error of u
]E[ (t» V7XV7 87 Mt)(\(V,Xv, B)|t7 Xtv]
Ela(v, XV, B)|t, X/!]

’ alv, X, B)}

’ (t7V7Xv7B7Mt)7

Conditional variance of
We train M to minimize the conditional variance of the matching vector field
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e How to derive SOCM? The optimal control admits an analytic expression as the
score (gradient of logarithm) of an unnormalized density! Similar to score-based
diffusion.

o Key idea: path-wise reparameterization trick, a novel technique to reexpress the
gradient of a conditional expectation.

e What is the role of the reparameterization matrix M?

2
L(u, M) = Ee xv [lu(X{, t) — u™(X{, t)[*(v, X, B)]

L2 error of u
]E[ (tv V7XV7 87 Mt)(\(V,Xv, B)|t7 Xtv]
Ela(v, XV, B)|t, X/!]

’ alv, X, B)}

' (t7V7Xv787 Mt) -

Conditional variance of
We train M to minimize the conditional variance of the matching vector field

e How do we choose v? We want v such that a(v, X") has low variance. In
general, we take v to be the current learned control w.
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Experiments: settings, baselines and ablations

Settings:

e Quadratic Ornstein Uhlenbeck / Linear Quadratic Regulator: Linear base drift b,
quadratic state cost f, quadratic terminal cost g

e Linear Ornstein Uhlenbeck: Linear base drift b, quadratic state cost f, linear
terminal cost g

e Double Well: terminal cost g is minus log-density of high-dimensional double well
(29 modes).
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quadratic state cost f, quadratic terminal cost g

e Linear Ornstein Uhlenbeck: Linear base drift b, quadratic state cost f, linear
terminal cost g

e Double Well: terminal cost g is minus log-density of high-dimensional double well
(29 modes).

Baselines:

o Adjoint method [Pon62]

o Cross-entropy loss [Zha+14]

o Log-variance loss [NR23]

o Variance loss [NR23]

e Moment loss [WHJ17; HJE18]

Ablations:

o SOCM with constant M; = Id

o SOCM-Adjoint: modification of SOCM where the adjoint method is used instead
of the path-wise reparameterization trick
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Control L2 error

Control L2 error: B, xv [|lu(XY, t) — u* (XY, t)[2a(v, XY, B)] /B¢ xv [o(v, XV, B)]

Quadratic Ornstein Uhlenbeck, easy (d = 20)
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Importance weight variance: Var[a(u, XY, B)]/E[a(u, X*, B)] = Var[F(X")-Z; (X*)]

Importance weight std. dev. (normalized)
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Experiments: Importance weight variance
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L(u, M) = L? error of u+ Conditional variance of w

Training loss (EMA 0.01)
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Experiments: Training loss for SOCM and ablations
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Key ideas
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Derivation of the SOCM loss (1/3)

Reminders:

o X" is the process controlled by u; it is the solution of
dX! = (b(XY,t) + o(t)u(XE, 1)) dt + VAo(t)dB:,  X& ~ po.
e X is the uncontrolled process; it is the solution of
dX; = b(X;, t) dt + VAo (t)dB:, Xo ~ po.
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The optimal control u* satisfies
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Consider the loss
L(u) =E[L [T Ju(Xe, t) — u* (Xe, 8)]|2 dt exp (= AL [ £(Xe, t) dt — A~1g(XT))]
E[L [T (lu(Xe, )| = 2(u(Xe, t), u* (X, £)) + [|u* (Xe, £)||?) dt
X e><p(—)\*1 fo Xt,t)dt—)\*lg(XT))}.
The only optimum of this loss is u*. Using equation (5), the cross-term can be
rewritten as:

E[L [T (u(Xe, t), v (Xe, t)) dt exp (— A~L [] £(Xe, t)dt — A~ 1g (XT))}
= —AE[L [T (u(Xe, 1), 0(t) TVAE[exp (= AL [T £(Xs, ) ds — A 1g(XT))|Xe = x] ) dt
Xexp(f)\_lfo (Xs,s)ds)].
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Derivation of the SOCM loss (2/3)

To evaluate the derivative of the conditional expectation, we use:

Proposition (Path-wise reparameterization trick for stochastic optimal control)

For each t € [0, T], let My : [t, T] — R9X9 be an arbitrary continuously
differentiable function matrix-valued function such that M:(t) = Id. We have that
VXE[exp (= AL LT (X, s)ds — A~ Lg(X7)) [ Xe = x]

E[(— A1 [)] Me(s)Vif(Xs,s)ds — A IMe(T)Vg(X7)
+ A2 [T(Me(s)Vxb(Xs,s) — 8sMe(s)) (0~ 1) T (Xs, 5)dBs)
x exp (— AL [T F(Xs,8)ds — A"1g(X7))|Xe = x].

(6)

Using (6) and completing the square, we obtain that for some constant K independent

of u,
L£(u) =E[L [T lu(Xe, t) + o(t) ([, Me(s)VxF(Xs,s)ds + Me(T)Vg(XT)

— A2 [T(Me(s)Vxb(Xs, 8) — 8sMe(s)) (0™ 1) T (Xs, 5)dBs) ||* de

x exp (— A1 [T F(Xe, t) dt — A" 1g(X7))] + K.
If we perform a change of process from X to X" by applying the Girsanov theorem,
where v is arbitrary, we obtain the loss Lsocwm(u, M).

26



Derivation of the SOCM loss (3/3)

Stochastic Optimal Control Matching (SOCM) [Dom+23]

m;\r) ‘C(uv M) = ]Et,XV UIU(X;’, t) - (t7 v, va M)”z(‘(vv Xv)]7
u,

(£, v, X¥, M) = — /T M(t, s)VxF(X,s) ds — M(t, T)Vg(XY)

- /T(M(t, S)Vab(XY,s) — BsM(t, s))v(X', s) ds
' T
- \FA/ (M(t, s)Vxb(X, s) — BsM(t, 5)) dBs,
T
a(v, X¥) = exp ( - % /0 F(XY,t)ds — lg(X-‘,’—)
1 T v v 2
- w0, de0) - / IvOx o2 )
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Future directions within stochastic optimal control

Applications of SOCM

o Test and benchmark SOCM as an algorithm to sample from unnormalized
densities
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Future directions within stochastic optimal control

Applications of SOCM
o Test and benchmark SOCM as an algorithm to sample from unnormalized
densities
e Test and benchmark SOCM as an importance sampling algorithm for stopped
diffusions (more in backup slides)

Technical improvements of SOCM

o Make reparameterization matrix M depend to the controlled process XV.

o Test alternative way to use Girsanov theorem to lower the gradient variance when
learning controls: explicit perturbations . It can be combined with the path-wise
reparameterization trick and also applied to other methods like the adjoint,
cross-entropy, log-variance...
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Future applications of the path-wise reparameterization trick

PWRT for diffusion processes

e The PWRT can be used to generalize conditional score matching to diffusion
processes with generic drifts.
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Future applications of the path-wise reparameterization trick

PWRT for diffusion processes
e The PWRT can be used to generalize conditional score matching to diffusion
processes with generic drifts.

o le., we can learn Vlog p; for X s.t. dX; = b(X;, t) dt + o(t) dB; using a
least-squares loss (previously only implicit score matching was available).

o When we set a linear drift b(x, t) = —A(t)x, we recover standard conditional
score matching.

PWRT for Neural SDEs

e Reminder: Neural SDEs are the SDE analog of Neural ODEs, they use the adjoint
method.

o We can replace the adjoint method by PWRT.
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Informal derivation of the path-wise reparameterization trick (1/2)

Consider the Euler-Maruyama discretization X = ()A(k)k:():K of the uncontrolled
process X with K + 1 time steps (let 6 = T /K be the step size):
)A(owpo, )A(k+1 :)A(k+§b()A(k,k§)+v5)\0'(k6)sk, Ek NN(O,/).
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Consider the Euler-Maruyama discretization X = ()A(k)k:():K of the uncontrolled
process X with K + 1 time steps (let 6 = T /K be the step size):
)A(owpo, )A(k+1 =)A<k+§b()%k,k§)+\/ﬁ0(k5)€k, Ek NN(O,/).
We can approximate

.
E[exp(—,\—:‘/t f(Xs,s)ds — A" 1g(X7)) | Xe = X]

[exp A7Ls Z f( Xk, Ailg()A(K))PA(O = X]7
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Informal derivation of the path-wise reparameterization trick (1/2)

Consider the Euler-Maruyama discretization X = ()A(k)k:():K of the uncontrolled
process X with K + 1 time steps (let 6 = T /K be the step size):
)A(oNpo, )A(k+1 :)A(k+§b()%k,k§)+\/ﬁo(k6)sk, Ek NN(O,/).
We can approximate

.
E[exp(—,\—:‘/t f(Xs,s)ds — A" 1g(X7)) | Xe = X]

[exp A7Ls Z f( Xk, Ailg()A(K |)A<0 = X]7
Remark that for k € {0, .. = 1} Kis1| X ~ N(Xy + 5b(X, k6), 5 (a0 T )(kS)).

Hence,
E[exp (— A28 K F(Xk,s) — A 1g(Xk)) [ Xo = x]

= C7 [fgaye &b (= A1 T45G F(%, 5) — A7 g (%)
— k5 SRt lo ™Y (k) (Riesr — i — 0b(%c, k) |2
—spxllo™ ()(X1*X*5b(X70))II2)df<1---d>“<;<7
where € = \/(2rN)K [T det((o0T)(k9)).

@)
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Informal derivation of the path-wise reparameterization trick (2/2)

We can write
ViE[exp (— A28 K F(Rk, s) — A 1g(Xk)) Ko = x]

31



Informal derivation of the path-wise reparameterization trick (2/2)

We can write
ViE[exp (— A28 K F(Rk, s) — A 1g(Xk)) Ko = x]
= VZIE[exp ( N ZkK:_ol f()A(k7 s) — )\_lg()A(K)) \)A(o =x+ z] |z=0
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Informal derivation of the path-wise reparameterization trick (2/2)

We can write
ViE[exp (— A28 K F(Rk, s) — A 1g(Xk)) Ko = x]
=V:E[exp (— AWK (KXo s) — A 1g(Xk)) 1 Xo = x + 2] |2=0
= TV ([figayc exp (= A1 05 F(Sk,8) — A g (%)
— 51 SR o (K8) (Riy — R — 0b(i, k8)) 12
— 535 071 (0) (R — (x+2) —6b(x+2,0))||) &1 - - - %) [o=o0
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Informal derivation of the path-wise reparameterization trick (2/2)

We can write
ViE[exp (— A28 K F(Rk, s) — A 1g(Xk)) Ko = x]
=V:E[exp (— AWK (KXo s) — A 1g(Xk)) 1 Xo = x + 2] |2=0
= CVe([figaye xp (= A28 UG (R, 5) — A 1g ()
— 51 SR o (K8) (Riy — R — 0b(i, k8)) 12
— 535 071 (0) (R — (x+2) —6b(x+2,0))||) &1 - - - %) [o=o0
= CTV.(ffioye &P (—A18 TS F(Re + 9(2, k6), 5)— A 1g (R + (2, K8))
_ﬁz:f:_ll\\a*l(k&)()?kﬂ +9(z, (k+1)8) — Kk — (2, k&) —5b(Kk+1) (2, k&), k8))||?
— sh[lo=2(0) (%1 +1p(2, 8) — (x+1b(2, 0)) = 5b(x+1(z,0),0))||?) dsy - - - AR ) |z=0,

o In the last equality, ¢ : RY x [0, T] — R9 is an arbitrary twice differentiable
function such that 1(z,0) = z for all z € R9, and (0,s) = 0 for all s € [0, T].
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Informal derivation of the path-wise reparameterization trick (2/2)

We can write
ViE[exp (— A715 ZkK;Ol f(Xk,s) — A" g(Xk)) | Xo = x]
=V E[exp (= A716 ZkK:_ol (X, s) — )\_lg()A(K)) |Xo = x + z]|z=0
= CIV(ffipayx &P (= A1 4G F(%, 5) — A Lg (%K)
— 535 Lonct 1o (kO) (Ricr1 — % — bR, k8))|[2
— 53x lo7H(0) (R — (x+2) —6b(x+2,0))|[2) d%1 - - - ARk ) |2=0
= CTIVa([figayk exp (=AT28 305G F(R + ¥(2, k8), 5) = A~ (Rk + 9(z, K9))
— 33 Ly o7 (k) Rucrn +9(2, (k+1)8) — S — (2, k8) —b(k +3 (2, k6), k&) |12
—55x [0 (0) (R +4(2, 6) — (x+9(2,0)) —=8b(x+4(2,0),0)) |*) df1 - - - dRk ) | =0,
25X
o In the last equality, ¢ : RY x [0, T] — R9 is an arbitrary twice differentiable
function such that 1(z,0) = z for all z € R9, and (0,s) = 0 for all s € [0, T].

We used that for k € {1,..., K}, the variables Xy are integrated over RY, which
means that adding an offset 1)(z, kd) does not change the value of the integral.
We also used that ¢(z,0) = z.
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We can write
ViE[exp (— A715 ZkK;Ol f(Xk,s) — A" g(Xk)) | Xo = x]
=V E[exp (= A716 ZkK:_ol (X, s) — )\_lg()A(K)) |Xo = x + z]|z=0
= CIV(ffipayx &P (= A1 4G F(%, 5) — A Lg (%K)
— 535 Lonct 1o (kO) (Ricr1 — % — bR, k8))|[2
— 53x lo7H(0) (R — (x+2) —6b(x+2,0))|[2) d%1 - - - ARk ) |2=0
= CTIVa([figayk exp (=AT28 305G F(R + ¥(2, k8), 5) = A~ (Rk + 9(z, K9))
— 33 Ly o7 (k) Rucrn +9(2, (k+1)8) — S — (2, k8) —b(k +3 (2, k6), k&) |12
—55x [0 (0) (R +4(2, 6) — (x+9(2,0)) —=8b(x+4(2,0),0)) |*) df1 - - - dRk ) | =0,
25X
o In the last equality, ¢ : RY x [0, T] — R9 is an arbitrary twice differentiable
function such that 1(z,0) = z for all z € R9, and (0,s) = 0 for all s € [0, T].

We used that for k € {1,..., K}, the variables Xy are integrated over RY, which
means that adding an offset 1)(z, kd) does not change the value of the integral.
We also used that ¢(z,0) = z.

To conclude the proof, we differentiate with respect to z under the integral sign,
and define M(s) = Vi(z, s)|z=o0-
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Content of the talk

Introduction
e Stochastic optimal control: definition

o Examples: robotics, sampling unnormalized densities, importance sampling for
diffusions

o Existing approaches: the adjoint method
Stochastic Optimal Control Matching
o Comparing stochastic optimal control with normalizing flows
o Our algorithm: SOCM 2
e Main features of our algorithm
o Experiments
Key ideas
o Derivation of the SOCM loss
e The path-wise reparameterization trick

o Conclusions and future directions

zDomingo-Enrich, C., Han, J., Amos, B., Bruna, J., Chen, R.T.Q. Stochastic optimal control matching,
arXiv preprint, 2023.
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Thank you!

Contact: cd2754@nyu.edu
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Experiments: Gradient norm
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Experiments: Control objective
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