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Motivation: Interpretable ML

Also called XAl

Ingredients:

Data D A
inputs X and prediction Y
Trained ML model m

X > EE g
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Motivation: Method zoo

Shapley Values Counterfactual explanatlons
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Motivation: What real problems are solved?

My new paper introducing
Deep-LIME got accepted. It
approximates the ML model
locally with a deep net.

Congrats, cool! What can |
use it for?

@t? Well, it explains stuff!

Dear XAl community, we need to talk! [Freiesleben and Konig, 2023]
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Motivation: Can we use (interpretable) ML for science?

https://ml-science-book.com/

Supervised
Machine Learning
for Science

How to stop worrying and love
your black box

Christoph Molnar & Timo Freiesleben
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https://ml-science-book.com/

Motivation: Model audit vs scientific inference

Model audit

X =» ML model =>» Y

Scientific inference

X —» Nature —~>» Y
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Motivation: Laura example
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» How relate language and math skills?
» Data [Cortez and Silva, 2008]:

= students grades,
m parent's jobs/education,
= age, tutoring, absences, etc.
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Motivation: Partial dependence plot

» Timo= (Port grade: O; tutoring: no; absences: 5; .. .)

20 20
18 18
16 16
" 14 . 14 rYYY
8 12 g 12 °®
210 210 [ 2
T 8 B s eececcccce’
= =
6 6
4 4
2 2
0 0
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
Portuguese grade Portuguese grade
ICE curves Partial Dependence Plot (PDP)
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Traditional scientific inference: Elementwise representation

Definition: Elementwise Representationality

A model is elementwise representational (ER) if all model elements represent an element in the

phenomenon.
ER Model Variables Relations Parameters
Newtonian gravitational T, Pe,T(, PC Ps=Frg , Pc=Fgc Mg, mc,G
dynamics of two point masses F(®=F®(=Gm®m‘r/|r® —rc |2

encoding decoding
Celestial motion Earth @ Acceleration by force Masses,

of Earth and Moon Moon C Gravitational attraction gravitational constant

Phenomenon Components Dependencies Properties

11/34



Traditional scientific inference: Why ER?

» ERis cognitively appealing
» ER eases model construction
» ER allows inference from model to world
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Traditional scientific inference: Example

Y=math and X,=Portuguese

Y =700+ 51X, + €

Least squares: Myn(xp) = 10.46 + 0.77x,

Confidence Intervals CI5 = [10.05;10.88] and C1; = [0.63;0.91]
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Traditional scientific inference: ML models not ER

» ML models are less assumption laden
» Most model elements (weights, activation functions, etc) have no meaning

OO0 Cco0o00C 0000
o}

14/34



Traditional scientific inference: Inference with ML

» Option 1: [Bokulich, 20711]

m Scientific inference without ER is impossible
» Option 2: [Olah et al, 2020]

= ML models are ER too

».

» Option 3: [Cichy and Kaiser, 2019]
m IML for scientific inference
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Traditional scientific inference: IML for inference

» Problems

m Current IML focuses on model audit
= Not every audit allows for inference

= Audit and inference are complementary goals

X —>

ML model

—> Y

X —>

Nature

—> Y
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Theory of property descriptors: Hollistic representation

Definition: Holistic representationality

A model is holistically representational (HR) if the whole model represents aspects of the phenomenon.

Variables Relations Parameters
ER Model |Ruriuvssviy s SNs s

Phenomenon Components

Dependencies

Properties

.....

IML Property

HR Model St K W Descriptions

Variables Relations Parameters
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Theory of property descriptors: What ML models represent?

Problem Loss L(Y, (X)) Optimal predictor®m
Regression mean squared error (Y — m(X))? By x[Y| X1
(¥ continuous) mean absolute error |Y — m(X )| median(Y | X))

Classification
(Y discrete)

0-1 loss

Cross entropy

Oif m(X) =Y, else |

Zrey Pr(r)log Pacxey(r)

arg max,.y P(Y=y| X)

BY|X)
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Theory of property descriptors: Four steps

D

l

1. Formalize
scientific question
as an
estimand

Q)

m, K

l

2. Identify the
estimand with
a property
descriptor

m, D*

|

m, D*I, D

|

3. Estimate property
descriptions
with trained

ML model and data

4. Quantify the
uncertainties in

property
descriptions
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Theory of property descriptors: 1. Formalize scientific question

» Scientists start by asking and formalizing questions.
» Question: How are language skills associated with math skills?
» Formalized Question: Q = Eyx,[Y | Xp]
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Theory of property descriptors: 2. Identify estimand

Definition: Question Identifiability

We say that a question is identifiable relative to probabilistic knowledge K if we can compute Q from m
and K.

Laura’s question can be identified with K = P(X_,, | Xp)

Q :=Eyx,[Y | Xp]
=Ex_,ix,[Eyix[Y | X] | Xp] (by the tower rule)
= Ex_,x,[M(X) | Xp].
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Theory of property descriptors: 2. Identify estimand

Definition: Property Descriptor

A property descriptor is a continuous function gk that identifies Q given K

gk : M — Q with gg(m)=Q.

In our example, this is the conditonal Partial Dependence Plot (cPDP):
gk(M) == Ex_, x, [M(X) | Xp]
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Theory of property descriptors: 3. Estimate property

In real life, we have limited access to X, Y. We have finite data.

Definition: Property Description Estimator

The property description estimator g~ is an unbiased estimator of g.
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Theory of property descriptors: 4. Uncertainty quantification

We make two errors on the way:
we do not have the optimal model (model error), and
we only have finite data (estimation error).

20 20
18 18
16 16 o
ol
14 -0 14 /0008
[} () 20/°~
Q12 T 12 ",,’ S
5 CRTRIRN o
210 210 Moae pog
B L & h e 2
s 8 ~\"\__/, s 8 ° ./,/
6 ©0%eq0¥ 6 90%eq0® -
_-’_‘\,” ,'
4 4 ’,
Lo N /’
4
2 2 =
0 0
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20

Portuguese grade Portuguese grade
25/34



Theory of property descriptors: Practical descriptors

Global / local question

Estimand

- IML method

How much worse can Y be
predicted from X if we did not

EPEx y mx(X) - EPEx_ ymx_ (X ,)

cFI

Conditional know X,,? Strobl et al. (2008)

contribu-

tion How much worse can Y be ICI
predicted from X = @ if we did Ly, mx (x)) — L(y,mx_,(x-p))

not know X,,? Casalicchio etal. (2019)
1 -1\~ (PR ) _ SAGE
What is the fair share of feature 52’;‘: '( L\'I) (EPEXM»Y M X s (Xs0ip)
. X, in the prediction of Y? v 8

Fair 4 p EPEx, y mx, ( xs)) Covert et al. (2020)

contribu-

tion What is the fair share of feature Conditional

X, in the prediction of Y if
X=x?

I3 (35)) O @5, ) — mx, as)
SCMIp)

Shapley values

Aas et al. 2021)

Which student information should educators track? = ICl, cFl, conditional SHAP & SAGE
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Theory of property descriptors: Practical descriptors

Global / local question Estimand IML method
What is the best estimate of Y if my (X,) cPDP
we only know X,? % p Apley and Zhu (2020)
Effect B
ec How does the best estimate of ¥ ICE curve
change relative to X, knowing mx(Xp, @ p)
that X_, = a_,? Goldstein et al. 2015)
Under which realistic . PRIM?
conditions X can we observe ::i :’";dy(mx (@), yeet) Fricdiman and Fisher
. relevant value yr? ) (1999)
value Under which realistic . X , Counterfactu-
conditions similar to & can we arg ml;d-y(mX(w ). yrel) + A dy(a, ) als®
observe relevant value yp? wemw Dandl et al. (2020)

How influences parents’ education students math skills? = ICE & cPDP
What characterizes (more/less) successful students? = counterfactuals & PRIM
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Theory of property descriptors: Disagreement

Methods can only meaningfully disagree if they have different estimands.
The disagreement problem stems from a lack of clarity about the question asked.

I

The answer cannot be
42, you are wrong!

42 is the answer to
the question you
asked, but not to the
question you were
interested in.
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Discussion: Causality

Most scientific questions are causal:

Would tutoring in Portuguese improve students math skills? (Interventional)
Did the student fail in math because of her Portuguese skills? (Counterfactual)

Property descriptors describe associational quantities.
Causal questions add another layer to the pipeline and require causal knowledge.
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Discussion: Limitations

» Direct estimation often better! (e.g. targeted learning [Van der Laan and Rose, 2011])
» Conditional sampling is needed but hard!
» Formalizing questions on images and sound?
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Conclusion

Problem: Scientific inference via model elements is not available. Current IML mixes different
desiderata.

Our Solution: Smart interrogation with property descriptors allows to learn about the process.
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Questions




Graph for Formal Depiction

Datasets A Models M Description Space O

gx(m)

Clggp
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