recent andvancements

in tractable probabilistic inference

antonio vergari (he/him)

26th Sept 2024 - TransferLab Seminar

april-tools.github.io

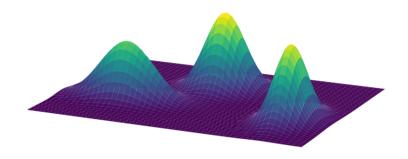
autonomous & provably reliable intelligent learners

about probabilities integrals & logic

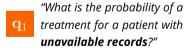
april is
probably a
recursive
identifier of a
lab

deep generative models +

flexible and reliable (logic &) probabilistic reasoning?



a love letter to mixture models...



"How **fair** is the prediction is a certain protected attribute changes?"

"Can we certify no adversarial examples exist?"

 $\mathbf{q_1} \int p(\mathbf{x}_o, \mathbf{x}_m) d\mathbf{X}_m$ (missing values)

$$\frac{\mathbb{E}_{\mathbf{x}_c \sim p(\mathbf{X}_c | X_s = 0)} \left[f_0(\mathbf{x}_c) \right] - }{\mathbb{E}_{\mathbf{x}_c \sim p(\mathbf{X}_c | X_s = 1)} \left[f_1(\mathbf{x}_c) \right] }$$
 (fairness)

$$\frac{\mathbf{q_3}}{\mathbf{q_3}} \ \frac{\mathbb{E}_{\mathbf{e} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I}_D)} \left[f(\mathbf{x} + \mathbf{e}) \right]}{\textit{(adversarial robust.)}}$$

...in the language of probabilities

more complex reasoning

neuro-symbolic Al

probabilistic programming

computing uncertainties (Bayesian inference)

...and more application scenarios

$$\mathbf{q_1} \int p(\mathbf{x}_o, \mathbf{x}_m) d\mathbf{X}_m$$
 (missing values)

$$\frac{\mathbb{E}_{\mathbf{x}_c \sim p(\mathbf{X}_c | X_s = 0)} \left[f_0(\mathbf{x}_c) \right] - }{\mathbb{E}_{\mathbf{x}_c \sim p(\mathbf{X}_c | X_s = 1)} \left[f_1(\mathbf{x}_c) \right] }$$
 (fairness)

$$\frac{\mathbf{q}_3}{\textit{(adversarial robust.)}} \frac{\mathbb{E}_{\mathbf{e} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I}_D)} \left[f(\mathbf{x} + \mathbf{e}) \right]}{\textit{(adversarial robust.)}}$$

hard to compute in general!

$$\mathbf{q_1}$$

$$\int p(\mathbf{x}_o, \mathbf{x}_m) d\mathbf{X}_m$$
 (missing values)

$$\begin{array}{c} \mathbf{q}_2 & \mathbb{E}_{\mathbf{x}_c \sim p(\mathbf{X}_c | X_s = 0)} \left[f_0(\mathbf{x}_c) \right] - \\ \mathbb{E}_{\mathbf{x}_c \sim p(\mathbf{X}_c | X_s = 1)} \left[f_1(\mathbf{x}_c) \right] \\ \textit{(fairness)} \end{array}$$

$$\frac{\mathbf{q}_3}{\textit{(adversarial robust.)}} \frac{\mathbb{E}_{\mathbf{e} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I}_D)} \left[f(\mathbf{x} + \mathbf{e}) \right]}{\textit{(adversarial robust.)}}$$

it is crucial we compute them exactly and in polytime!

 $\mathbf{q_1} \int p(\mathbf{x}_o, \mathbf{x}_m) d\mathbf{X}_m$ (missing values)

- $\begin{array}{c} \mathbf{q}_2 & \mathbb{E}_{\mathbf{x}_c \sim p(\mathbf{X}_c | X_s = 0)} \left[f_0(\mathbf{x}_c) \right] \\ \mathbb{E}_{\mathbf{x}_c \sim p(\mathbf{X}_c | X_s = 1)} \left[f_1(\mathbf{x}_c) \right] \\ \textit{(fairness)} \end{array}$
- $\frac{\mathbf{q}_3}{\textit{(adversarial robust.)}} \frac{\mathbb{E}_{\mathbf{e} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I}_D)} \left[f(\mathbf{x} + \mathbf{e}) \right]}{\textit{(adversarial robust.)}}$

it is crucial we compute them tractably!

why tractable models?

exactness can be crucial in safety-driven applications

guarantee constraint satisfaction [Ahmed et al. 2022]

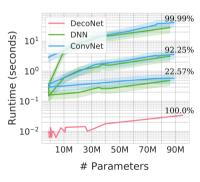
estimation error is bounded (0) [Choi 2022]

why tractable models?

they can be much faster than intractable ones!

Method	MNIST (10,000 test images)		
	Theoretical bpd	Comp. bpd	En- & decoding time
PC (small)	1.26	1.30	53
PC (large)	1.20	1.24	168
IDF	1.90	1.96	880
BitSwap	1.27	1.31	904

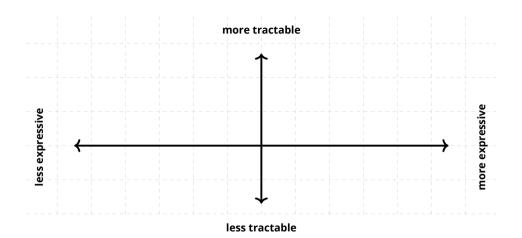
[Liu, Mandt, and Broeck 2022]

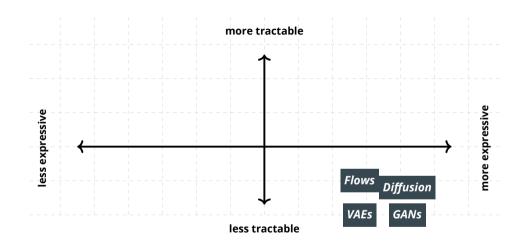


[Subramani et al. 2021]

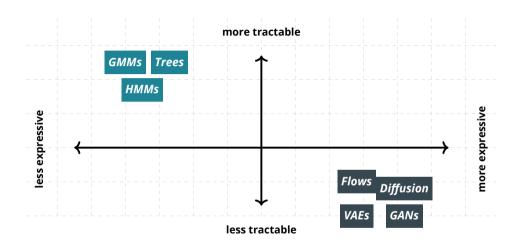
Goal

"Can we find a middle ground between tractability and expressiveness?"

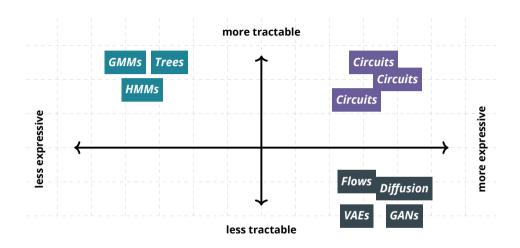




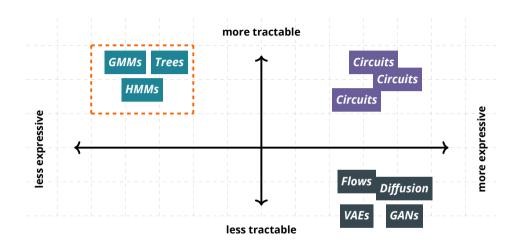
expressive models are not much tractable...



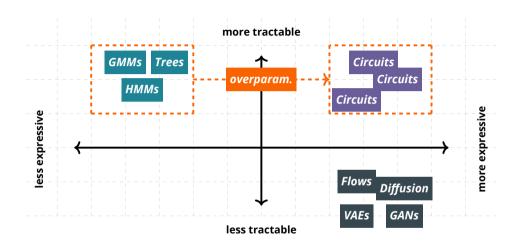
tractable models are not that expressive...



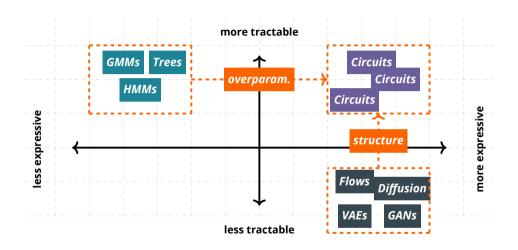
circuits can be both expressive and tractable!



start simple...



then make it more expressive!



impose structure!

Goal

"Can we design computational graphs that efficiently encode inference?" Goal

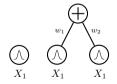
"Can we design computational graphs that efficiently encode inference?"

 \Rightarrow yes! with circuits!

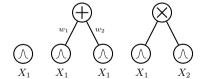
A grammar for tractable computational graphs

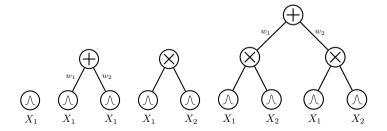
I. A simple tractable function is a circuit

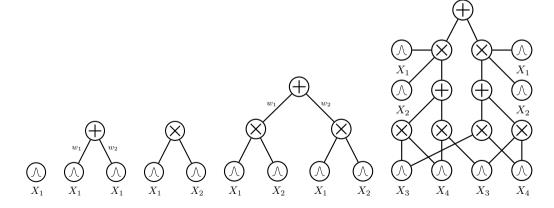
- I. A simple tractable function is a circuit
- II. A weighted combination of circuits is a circuit



- I. A simple tractable function is a circuit
- II. A weighted combination of circuits is a circuit
- III. A product of circuits is a circuit

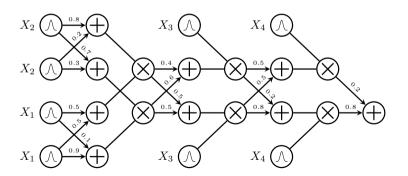






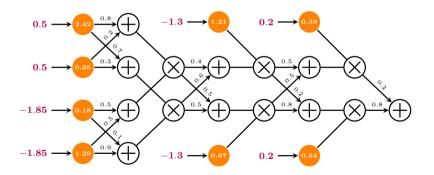
Probabilistic queries = **feedforward** evaluation

$$p(X_1 = -1.85, X_2 = 0.5, X_3 = -1.3, X_4 = 0.2)$$



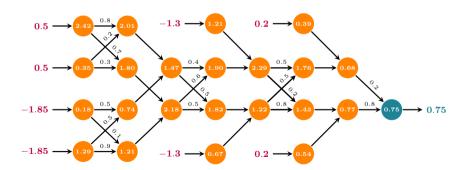
Probabilistic queries = **feedforward** evaluation

$$p(X_1 = -1.85, X_2 = 0.5, X_3 = -1.3, X_4 = 0.2)$$



Probabilistic queries = **feedforward** evaluation

$$p(X_1 = -1.85, X_2 = 0.5, X_3 = -1.3, X_4 = 0.2) = 0.75$$



...why PCs?

1. A grammar for tractable models

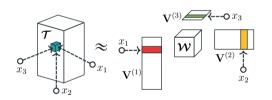
One formalism to represent many probabilistic and logical models

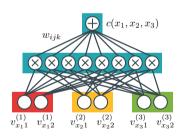
⇒ #HMMs #Trees #XGBoost, Tensor Networks, ...

and other PGMs...

tensor factorizations

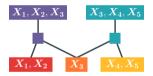
as circuits





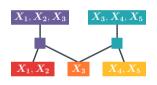
Loconte et al., What is the Relationship between Tensor Factorizations and Circuits (and How Can We Exploit it)?, , 2024

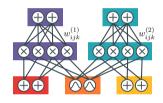
Learning recipe



1) Build a region graph

Learning recipe

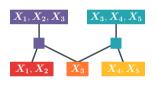




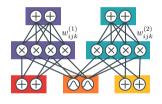
2) Overparameterize

2.1) pick a (composite) layer type2.2) choose how many units per layer

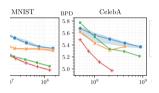
Learning recipe



1) Build a region graph



2) Overparameterize



3) Learn parameters

learning & reasoning with circuits in pytorch

...why PCs?

1. A grammar for tractable models

One formalism to represent many probabilistic and logical models

⇒ #HMMs #Trees #XGBoost, Tensor Networks, ...

and other PGMs...

...why PCs?

1. A grammar for tractable models

One formalism to represent many probabilistic and logical models

⇒ #HMMs #Trees #XGBoost, Tensor Networks, ...

2. Expressiveness

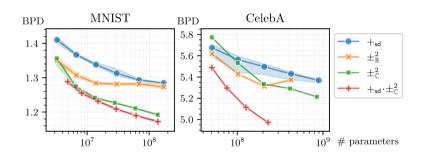
Competitive with intractable models, VAEs, Flow...#hierachical #mixtures #polynomials

How expressive?

	QPC	PC	Sp-PC	HCLT	RAT	IDF	BitS	BBans	McB
MNIST	1.11	1.17	1.14	1.21	1.67	1.90	1.27	1.39	1.98
F-MNIST	3.16	3.32	3.27	3.34	4.29	3.47	3.28	3.66	3.72
EMN-MN	1.55	1.64	1.52	1.70	2.56	2.07	1.88	2.04	2.19
EMN-LE	1.54	1.62	1.58	1.75	2.73	1.95	1.84	2.26	3.12
EMN-BA				1.78					2.88
EMN-BY	1.53	1.47	1.54	1.73	2.72	1.98	1.87	2.23	3.14

competitive with Flows and VAEs!

How scalable?



up to billions of parameters

...why PCs?

1. A grammar for tractable models

One formalism to represent many probabilistic and logical models

⇒ #HMMs #Trees #XGBoost, Tensor Networks, ...

2. Expressiveness

Competitive with intractable models, VAEs, Flow...#hierachical #mixtures #polynomials

3. Tractability == Structural Properties!!!

Exact computations of reasoning tasks are certified by guaranteeing certain structural properties. #marginals #expectations #MAP, #product ...

smoothness

decomposability

determinism

compatibility

Vergari et al., "A Compositional Atlas of Tractable Circuit Operations for Probabilistic Inference", NeurIPS, 2021

property A

property B

property C

property D

Vergari et al., "A Compositional Atlas of Tractable Circuit Operations for Probabilistic Inference", NeurIPS, 2021

property A

property B

property C

property D

tractable computation of arbitrary integrals

$$p(\mathbf{y}) = \int p(\mathbf{z}, \mathbf{y}) d\mathbf{Z}, \quad \forall \mathbf{Y} \subseteq \mathbf{X}, \quad \mathbf{Z} = \mathbf{X} \setminus \mathbf{Y}$$

⇒ **sufficient** and **necessary** conditions for a single feedforward evaluation

⇒ tractable partition function

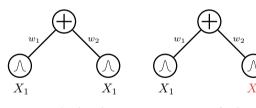
smoothness

decomposability

compatibility

determinism

the inputs of sum units are defined over the same variables



smooth circuit

non-smooth circuit

Vergari et al., "A Compositional Atlas of Tractable Circuit Operations for Probabilistic Inference", NeurIPS, 2021

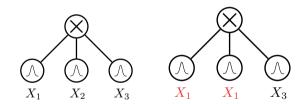
smoothness

decomposability

compatibility

determinism

the inputs of prod units are defined over disjoint variable sets

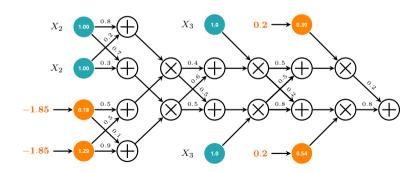


decomposable circuit non-decomposable circuit

Vergari et al., "A Compositional Atlas of Tractable Circuit Operations for Probabilistic Inference", NeurIPS, 2021

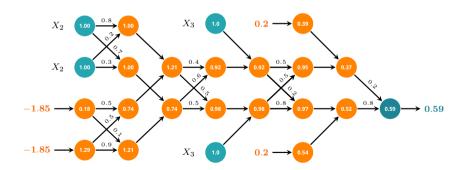
Probabilistic queries = **feedforward** evaluation

$$p(X_1 = -1.85, X_4 = 0.2)$$



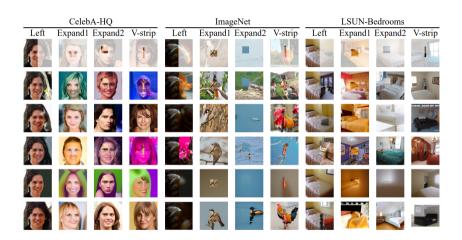
Probabilistic queries = **feedforward** evaluation

$$p(X_1 = -1.85, X_4 = 0.2)$$



Tractable inference on PCs

Peharz et al., "Einsum Networks: Fast and Scalable Learning of Tractable Probabilistic Circuits", ICML, 2020



Liu, Niepert, and Broeck, "Image Inpainting via Tractable Steering of Diffusion Models", ICLR, 2024

General expectations

Integrals involving two or more functions:

$$\int \mathbf{p}(\mathbf{x}) \mathbf{f}(\mathbf{x}) d\mathbf{X}$$

General expectations

Integrals involving two or more functions:

$$\int \mathbf{p}(\mathbf{x}) \mathbf{f}(\mathbf{x}) d\mathbf{X}$$

represent both p and f as circuits...but with which structural properties? E.g.,

General expectations

Integrals involving two or more functions:

$$\int \mathbf{p}(\mathbf{x}) \mathbf{f}(\mathbf{x}) d\mathbf{X}$$

represent both p and f as circuits...but with which structural properties? E.g.,

$$\mathbb{E}_{\mathbf{x}_c \sim p(\mathbf{X}_c | X_s = 0)} \left[f_0(\mathbf{x}_c) \right] - \mathbb{E}_{\mathbf{x}_c \sim p(\mathbf{X}_c | X_s = 1)} \left[f_1(\mathbf{x}_c) \right]$$

smoothness

decomposability

compatibility

determinism

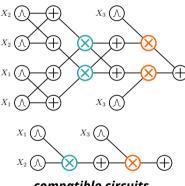
Vergari et al., "A Compositional Atlas of Tractable Circuit Operations for Probabilistic Inference", NeurIPS, 2021

smoothness

decomposability

compatibility

determinism



compatible circuits

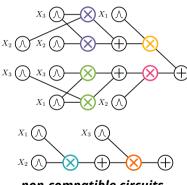
Vergari et al., "A Compositional Atlas of Tractable Circuit Operations for Probabilistic Inference", NeurIPS, 2021

smoothness

decomposability

compatibility

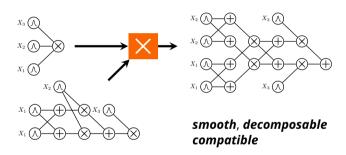
determinism



non-compatible circuits

Vergari et al., "A Compositional Atlas of Tractable Circuit Operations for Probabilistic Inference", NeurIPS, 2021

Tractable products



exactly compute $\int \mathbf{p}(\mathbf{x}) \mathbf{f}(\mathbf{x}) d\mathbf{X}$ in time $O(|\mathbf{p}||\mathbf{f}|)$

Vergari et al., "A Compositional Atlas of Tractable Circuit Operations for Probabilistic Inference", NeurIPS, 2021

Semantic Probabilistic Lavers for Neuro-Symbolic Learning

Kareem Ahmed

CS Department UCLA. ahmedk@cs ucla edu

Stefano Teso

CIMeC and DISI University of Trento stefano teso@unitn it Kai-Wei Chang

CS Department LICL A

kwchang@cs.ucla.edu

Guy Van den Broeck **CS** Department

LICLA guvvdb@cs.ucla.edu Antonio Vergari

School of Informatics University of Edinburgh avergari@ed.ac.uk

circuit products for reliable NeSy

Ground Truth

e.g. predict shortest path in a map

given \mathbf{x} // e.g. a tile map

Ground Truth

Ground Truth

given \mathbf{x} // e.g. a tile map find $\mathbf{y}^* = \operatorname{argmax}_{\mathbf{y}} p_{\theta}(\mathbf{y} \mid \mathbf{x})$ // e.g. a configurations of edges in a grid

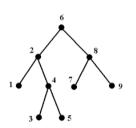
Ground Truth

given \mathbf{x} // e.g. a tile map find $\mathbf{y}^* = \operatorname{argmax}_{\mathbf{y}} p_{\theta}(\mathbf{y} \mid \mathbf{x})$ // e.g. a configurations of edges in a grid s.t. $\mathbf{y} \models \mathsf{K}$ // e.g., that form a valid path

Ground Truth

```
given \mathbf{x} // e.g. a tile map find \mathbf{y}^* = \operatorname{argmax}_{\mathbf{y}} p_{\theta}(\mathbf{y} \mid \mathbf{x}) // e.g. a configurations of edges in a grid s.t. \mathbf{y} \models \mathsf{K} // e.g., that form a valid path
```

// for a 12×12 grid, 2^{144} states but only 10^{10} valid ones!



given \mathbf{x} // e.g. a feature map find $\mathbf{y}^* = \operatorname{argmax}_{\mathbf{y}} p_{\theta}(\mathbf{y} \mid \mathbf{x})$ // e.g. labels of classes s.t. $\mathbf{y} \models \mathsf{K}$ // e.g., constraints over superclasses

$$\mathsf{K}: (Y_{\mathsf{cat}} \implies Y_{\mathsf{animal}}) \land (Y_{\mathsf{dog}} \implies Y_{\mathsf{animal}})$$

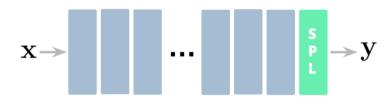
hierarchical multi-label classification

given \mathbf{x} // e.g. a user preference over K-N sushi types find $\mathbf{y}^* = \operatorname{argmax}_{\mathbf{y}} p_{\theta}(\mathbf{y} \mid \mathbf{x})$ // e.g. prefs over N more types s.t. $\mathbf{y} \models \mathsf{K}$ // e.g., output valid rankings

user preference learning

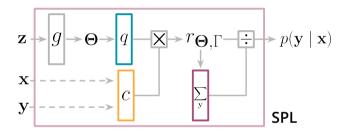
Choi, Van den Broeck, and Darwiche, "Tractable learning for structured probability spaces: A case study in learning preference distributions",
Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI), 2015

take an unreliable neural network architecture...

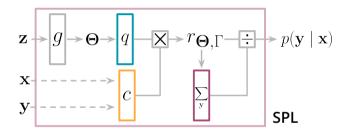


.....and replace the last layer with a semantic probabilistic layer

SPL



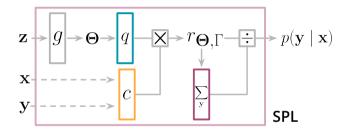
SPL



$$p(\mathbf{y} \mid \mathbf{x}) = \mathbf{q}_{\Theta}(\mathbf{y} \mid g(\mathbf{z}))$$

 $q_{\Theta}(\mathbf{y} \mid g(\mathbf{z}))$ is an expressive distribution over labels

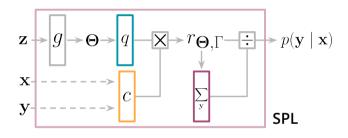
SPL



$$p(\mathbf{y} \mid \mathbf{x}) = \mathbf{q}_{\Theta}(\mathbf{y} \mid g(\mathbf{z})) \cdot \mathbf{c}_{\mathsf{K}}(\mathbf{x}, \mathbf{y})$$

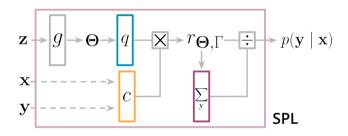
 $c_{\mathsf{K}}(\mathbf{x},\mathbf{y})$ encodes the constraint $\mathbb{1}\{\mathbf{x},\mathbf{y}\models\mathsf{K}\}$

SPL



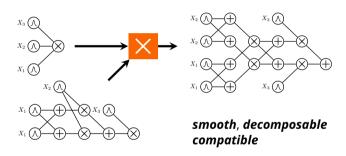
$$p(\mathbf{y} \mid \mathbf{x}) = q_{\Theta}(\mathbf{y} \mid g(\mathbf{z})) \cdot c_{\mathsf{K}}(\mathbf{x}, \mathbf{y})$$
a product of experts : (

SPL



$$p(\mathbf{y} \mid \mathbf{x}) = \mathbf{q}_{\Theta}(\mathbf{y} \mid g(\mathbf{z})) \cdot \mathbf{c}_{K}(\mathbf{x}, \mathbf{y}) / \mathbf{Z}(\mathbf{x})$$
$$\mathbf{Z}(\mathbf{x}) = \sum_{\mathbf{y}} \mathbf{q}_{\Theta}(\mathbf{y} \mid \mathbf{x}) \cdot c_{K}(\mathbf{x}, \mathbf{y})$$

Tractable products



exactly compute \mathbf{Z} in time $O(|\mathbf{q}||\mathbf{c}|)$

How to Turn Your Knowledge Graph Embeddings into Generative Models

Lorenzo Loconte

University of Edinburgh, UK 1.loconte@sms.ed.ac.uk

Robert Peharz

TU Graz, Austria robert.peharz@tugraz.at

Nicola Di Mauro

University of Bari, Italy nicola.dimauro@uniba.it

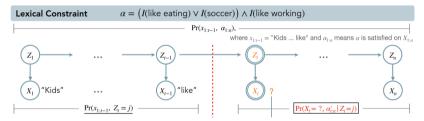
Antonio Vergari

University of Edinburgh, UK avergari@ed.ac.uk

PCs meet knowledge graph embedding models oral at NeurIPS 2023

Tractable Control for Autoregressive Language Generation

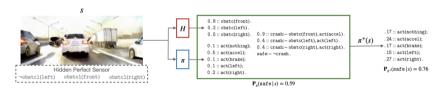
Honghua Zhang *1 Meihua Dang *1 Nanyun Peng 1 Guy Van den Broeck 1



constrained text generation with LLMs (ICML 2023)

Safe Reinforcement Learning via Probabilistic Logic Shields

Wen-Chi Yang¹, Giuseppe Marra¹, Gavin Rens and Luc De Raedt^{1,2}



reliable reinforcement learning (AAAI 23)

Logically Consistent Language Models via Neuro-Symbolic Integration

improving logical (self-)consistency in LLMs (under submission)

How to Turn Your Knowledge Graph Embeddings into Generative Models

Lorenzo Loconte

University of Edinburgh, UK 1.loconte@sms.ed.ac.uk

Robert Peharz

TU Graz, Austria robert.peharz@tugraz.at

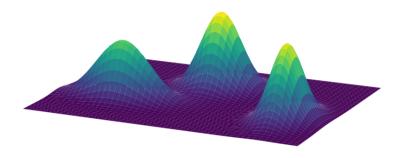
Nicola Di Mauro

University of Bari, Italy nicola.dimauro@uniba.it

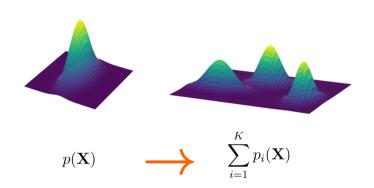
Antonio Vergari

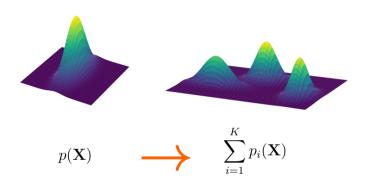
University of Edinburgh, UK avergari@ed.ac.uk

PCs meet knowledge graph embedding models oral at NeurIPS 2023



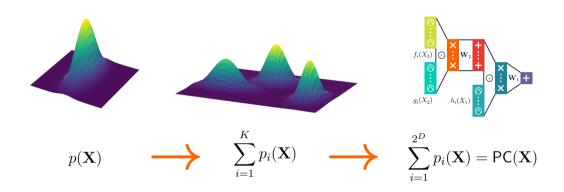
oh mixtures, you're so fine you blow my mind!

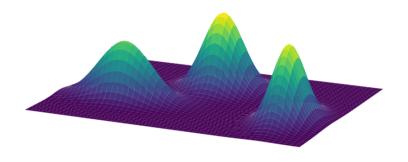




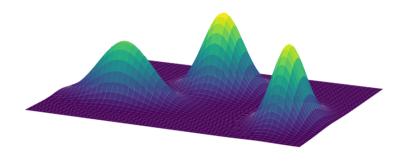
"if someone publishes a paper on model A, there will be a paper about mixtures of A soon with high probability"

A. Vergari

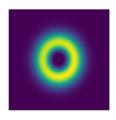


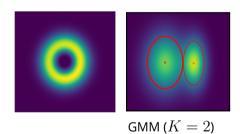


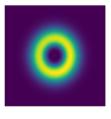
$$c(\mathbf{X}) = \sum_{i=1}^{K} w_i c_i(\mathbf{X}), \quad \text{with} \quad w_i \ge 0, \quad \sum_{i=1}^{K} w_i = 1$$

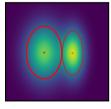


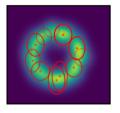
$$c(\mathbf{X}) = \sum_{i=1}^{K} w_i c_i(\mathbf{X}), \quad \text{with} \quad \frac{\mathbf{w_i} \ge \mathbf{0}}{\sum_{i=1}^{K} w_i} = 1$$



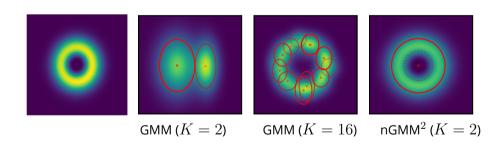






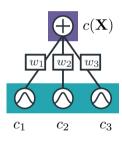


 $\operatorname{GMM}\left(K=16\right)$



shallow mixtures with negative parameters can be exponentially more compact than deep ones with positive ones.

subtractive MMs as circuits

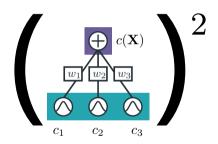


a **non-monotonic** smooth and (structured) decomposable circuit

possibly with negative outputs

$$c(\mathbf{X}) = \sum_{i=1}^{K} w_i c_i(\mathbf{X}), \qquad \mathbf{w_i} \in \mathbb{R},$$

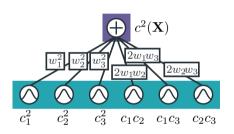
squaring shallow MMs



$$c^{2}(\mathbf{X}) = \left(\sum_{i=1}^{K} w_{i} c_{i}(\mathbf{X})\right)^{2}$$

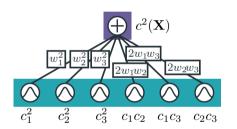
⇒ ensure non-negative output

squaring shallow MMs



$$c^{2}(\mathbf{X}) = \left(\sum_{i=1}^{K} w_{i} c_{i}(\mathbf{X})\right)^{2}$$
$$= \sum_{i=1}^{K} \sum_{j=1}^{K} w_{i} w_{j} c_{i}(\mathbf{X}) c_{j}(\mathbf{X})$$

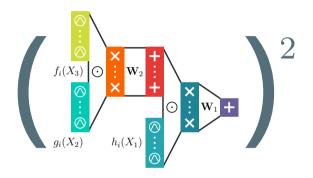
squaring shallow MMs



$$c^{2}(\mathbf{X}) = \left(\sum_{i=1}^{K} w_{i} c_{i}(\mathbf{X})\right)^{2}$$
$$= \sum_{i=1}^{K} \sum_{j=1}^{K} w_{i} w_{j} c_{i}(\mathbf{X}) c_{j}(\mathbf{X})$$

still a smooth and (str) decomposable PC with $\mathcal{O}(K^2)$ components!

$$\implies$$
 but still $\mathcal{O}(K)$ parameters

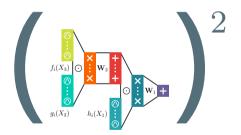


how to efficiently square (and renormalize) a deep PC?

65/72

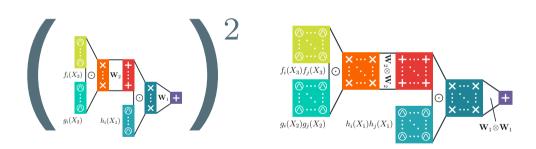
squaring deep PCs

the tensorized way



squaring deep PCs

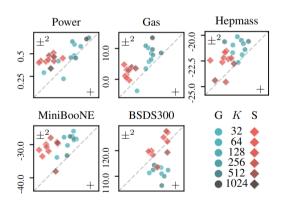
the tensorized way

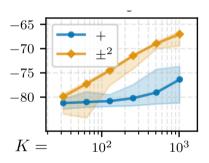


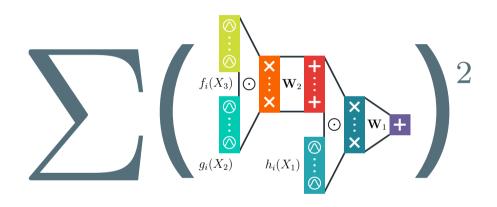
squaring a circuit = to squaring layers

how more expressive?

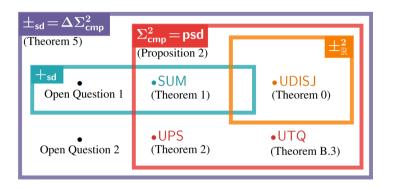
for the ML crowd



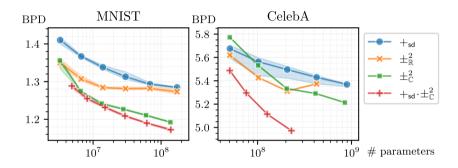




more that a single square?

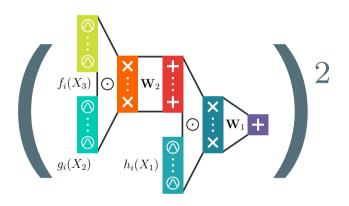


SOS circuits are more expressive



complex circuits are SOS (and scale better!)

learning & reasoning with circuits in pytorch



questions?