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Introduction



Physical Modeling

We model complex physical problems for predicting future outcomes or engineering!

Examples: Weather forecasting, fluid flow, aerodynamics, structural mechanics,
electromagnetic fields, sound wave propagation, heat conduction, ...

1

Mathematical laws describe such phenomena, e.g., partial differential equations (PDEs).

1Images: Wikipedia
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Scientific Computing

Example (Incompressible Navier–Stokes equations)

ρ
∂u
∂t + ρ(u · ∇)u−∇ · σ(u,p) = f, ∇ · u = 0

u fluid velocity, p fluid pressure

Traditionally, in Scientific Computing, we use numerical methods (such as FEM) to
approximate solutions to these systems of PDEs.
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Machine Learning

Machine learning develops statistical algorithms that learn from data, and thus perform
tasks without explicit instructions.

Recent example regarding physical modeling: GraphCast.2,3

→ Outperforms traditional methods in speed and accuracy!

2R. Lam et al. “Learning skillful medium-range global weather forecasting”. Science (2023).
3Paper pill: transferlab.ai/pills/2024/graphcast/
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Scientific Machine Learning (SciML)

→ Scientific Machine Learning = Scientific Computing + Machine Learning

Examples: physics-informed neural networks (PINNs), ML-accelerated simulations, ML for
scientific discovery, surrogate modeling, neural operators, ...

Physics-informed ML4 is a sub-discipline, e.g., incorporating PDEs into the training loss.
4G. Karniadakis et al. “Physics-informed machine learning”. Nature Reviews Physics (2021).

4



Function Operators

In mathematics, operators are function mappings: they map functions to functions.

Examples
1. The gradient operator

∇(·) =
(

∂

∂xi
(·)

)
i

maps a function u : Rd → R to its gradient ∇u : Rd → Rd.

2. Time-stepping for Navier-Stokes momentum balance equation could be

un+1 = G(un)

where G(u) = u+
∆t
ρ

(−ρ(u · ∇)u+∇ · σ(u,p) + f) .

Operators are omnipresent in physical modeling. Neural networks can learn operators!
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Operator Learning



Operator Learning

Definition (Operator)
Let U and V be (Banach) spaces of functions on bounded domains D ⊂ Rd and D′ ⊂ Rd′ .
An operator is a map

G : U → V .

Suppose we have observations (ui, vi)i=1,...,N where ui ∈ U and vi ≈ G (ui).

Definition (Operator Learning)
Operator learning is the task of building a parametric map GΘ : U → V with parameters
Θ ∈ Rp that minimizes

min
Θ∈Rp

1
N

N∑
i=1

‖vi − GΘ(ui)‖2V .
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Neural Operators

Neural Operators are neural networks that learn operators.

A non-exhaustive list of some relevant architectures includes:

• DeepONet (2019)
• Fourier Neural Operator (2020)
• and many others:

• POD-DeepONet (2021), MIONet (2022), BelNet (2023), ...
• GraphNO (2020), MultipoleGNO (2020), LowrankNO (2021), ...
• LaplaceNO (2023), WaveletNO (2023), ConvolutionalNO (2023), ...

→ They differ in motivation, task-specific performance, and important properties!
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DeepONet

The DeepONet5,6 (Deep Operator Networks or DON) architecture is directly motivated by
the Universal Approximation Theorem for Operators described by function evaluations.

5L. Lu et al. “Learning nonlinear operators via DeepONet based on the universal
approximation theorem of operators”. Nature Machine Intelligence (2021).
6Paper pill: transferlab.ai/pills/2023/learning-nonlinear-operators-deeponet/
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DeepONet

7

7T. Chen and H. Chen. “Universal approximation to nonlinear operators by neural
networks with arbitrary activation functions and its application to dynamical systems”.
IEEE Transactions on Neural Networks (1995).
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DeepONet

Theorem 1 motivates the distinction into branch and trunk networks.

The trunk learns basis functions and the branch corresponding coefficients.
10



Physics-Informed DeepONet

Outputs are functions, we can build physics-informed DeepONets for parametric PDEs.8,9

Consider the Poisson equation in 1D:

−u′′(x) = f(x), x ∈ [0, 1],
u(0) = u(1) = 0,

for f ∈ P3.

→ We can learn the solution operator G : f 7→ u!

8S. Wang et al. “Learning the solution operator of parametric partial differential
equations with physics-informed DeepONets”. Science Advances (2021).
9deepxde.readthedocs.io/en/latest/demos/operator/poisson.1d.pideeponet.html
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(Fourier) Neural Operators

Another way to look at function mapping:

Integral Kernel Operator
Let κ : D× D′ → Rm×n be a continuous kernel function.
An integral kernel K maps a function u : D→ Rn by

K(u)(y) :=
∫
D
κ(x, y)u(x)dx ∀y ∈ D′

to a function K(u) = v : D′ → Rm.

For D = D′ and κ(x, y) = κ(x− y), K is a convolution K(u) = (κ ∗ u).

This operation is well-known and broadly used (CNNs, fundamental solutions, ...)

This is the main building block of (Fourier) neural operators!
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(Fourier) Neural Operators

The neural operator framework by Kovachki et al.10,11 mimics that of a neural network.

Lifting→ Iterative Kernel Integrations→ Projection

10N. Kovachki et al. “Neural Operator: Learning Maps Between Function Spaces With
Applications to PDEs”. Journal of Machine Learning Research (2023).
11Paper pill: transferlab.ai/pills/2023/neural-operators/
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(Fourier) Neural Operators

How to choose a kernel function κϕ : D× D′ → Rm×n to evaluate the integral efficiently? If we just sample J points in D, we have complexity O(J2) to evaluate the integrals.
Truncation
Integrate only over subset S(y) ⊂ D, e.g., Br(y):

K(v)(y) =
∫
S(y)

κϕ(x, y)v(x)dx ∀y ∈ D′ → still O(J2)

Graph Neural Operator
Treat a discretization {y1, . . . , yJ} ⊂ D′ with neighborhoods N (yj) ⊂ D of yj:

K(v)(yj) =
1

|N (yj)|
∑

x∈N (yj)

κϕ(x, yj)v(x) ∀j = 1, . . . , J → O(J |N |)

Convolutional Neural Networks are a special case of Graph Neural Operators!
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Fourier Neural Operators (FNO)

Idea: Represent the kernel operator in Fourier space.12

Assume D = D′ and all functions are complex valued.
Let F denote the Fourier transform and F−1 its inverse.

By letting κϕ(x, y) = κϕ(x− y) and applying the convolution theorem, we find that

K(v) = (κϕ ∗ v) = F−1 (F(κϕ) · F(v)) .

Therefore, we can directly parameterize κϕ in Fourier space with Rϕ ∈ Cm×n.

Fourier Integral Operator
K(v)(y) = F−1 (Rϕ · F(v)) (y) ∀y ∈ D → O(J logJ) (FFT)

12Z. Li et al. “Fourier Neural Operator for Parametric Partial Differential Equations”.
International Conference on Learning Representations (2021).
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Fourier Neural Operators

FNO predicting the next time step for turbulent flow.

Orders of magnitudes faster (10.000x), but restricted to periodic unit square (FFT).
16



DeepONet vs. FNO

Comparison of DeepONet and FNO (and extensions):13

• Vanilla methods may lead to sub-optimal results
• FNO and DeepONet of same size exhibit same accuracy (using proper extensions)
• Some architectures are more flexible in terms of problem settings

13L. Lu et al. “A comprehensive and fair comparison of two neural operators (with
practical extensions) based on FAIR data”. CMAME (2022).
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Important Properties

Discretization-invariant
Locations of sensors in the input function domain are not fixed.
→ important for unstructured input data, e.g., meshes
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Important Properties

Discretization-invariant
Locations of sensors in the input function domain are not fixed.
→ important for unstructured input data, e.g., meshes

Prediction-free
Discretization of the input can differ from the one of the output.
→ enables physics-informed training or super-resolution

Domain-independent
Output function domain is independent of input function domain.
→ much more flexible, e.g., map boundary to solution

18



Important Properties

Comparison of DeepONet (DON), FNO, and another architecture, BelNet:14

14Z. Zhang et al. “BelNet: basis enhanced learning”. Proceedings of the Royal Society A (2022).
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BelNet

BelNet: Basis enhanced learning

Assuming that κ(x, y) =
∑K

k=1 pk(y)qk(x) and using a quadrature rule (wj, yj)j=1,...,N we get:∫
κ(x, y)u(y)dy =

K∑
k=1

qk(x)
∫
pk(y)u(y)dy ≈

K∑
k=1

qk(x)
N∑
j=1

wjpk(yj)u(yj)

That motivates for y = [y1, . . . , yN] and u = [u(y1), . . . ,u(yN)] an architecture like:

GΘ(u)(x) ≈
K∑
k=1

Qk(x)
(
Pk(y) · u

)
where Qk(x) ∈ R and Pk(y) ∈ RN.
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BelNet

BelNet is a generalization of DeepONet: it projects u into the space spanned by a
trainable basis p. FNO is a special case of BelNet.
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Just Interpolation?

Question: Are neural operators just interpolation?

We can always interpolate a function into a finite-dimensional function space
(→ discretize) and map the coefficients with neural networks.

• FNO (at its core) uses Fourier transform, this is interpolation!
• BelNet learns an interpolation, but gives continuous output.
• DeepONet...?

People started investigating the dependence of discretization and representation.15

15F. Bartolucci et al. “Representation Equivalent Neural Operators: a Framework for
Alias-free Operator Learning”. NeurIPS (2023).
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Software



Software

At TransferLab, we care about accessible software.

Open-Source Projects

• DeepXDE deepxde.readthedocs.io (L. Lu)
Physics-informed ML, DeepONets | multiple Python backends

• NeuralOperator neuraloperator.github.io (Z. Li, N. Kovachki)
Official implementation of FNOs and more | pyTorch

• Modulus github.com/NVIDIA/modulus (Nvidia)
Deep learning pipelines for physics-ML, FNO, SphericalFNO | pyTorch

• SciML/NeuralOperators.jl docs.sciml.ai/NeuralOperators (J. Ning, C. Rackauckas)
DeepONet, FNO, MarkovNO | written in Julia

• torch-physics, …
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Continuity (shameless self-plug)

We started with the development of Continuity16 to establish a high-level library for
operator learning with neural networks.

• Unified operator framework
v(y) = G(u)(y) ≈ Gθ(x,u(x), y)

v = operator(x, u, y)

• Various neural operator architectures
• PDEs for physics-informed training
• Expressive benchmarks

16aai-institute.github.io/Continuity
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Super-Resolution

Neural operators can be used for super-resolution, mapping to continuous functions.17,18

Example (DeepONet for super-resolution of turbulent flows)
FLAME AI Challenge: Up-sample flow samples from 32x32 to 128x128 (or whatever)

17M. Wei et al. “Super-Resolution Neural Operator”. (2023). arXiv: 2303.02584.
18See our example: aai-institute.github.io/Continuity/examples/superresolution

25
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Conclusion

Summary
• Neural operators transfer the concept of mathematical operators into ML.
• They have gained significant attention in recent years.
• There are many architectures with various characteristics.
• We want discretization-invariant, prediction-free and efficient neural operators.

→ Despite open questions, neural operators have exposed a lot of promising results!

Exciting times ahead!

Thank you for your attention.
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(Fourier) Neural Operators

Neural Operator (Kovachki et al.)

GΘ := Q ◦ σT(WT−1 +KT−1 + bT−1) ◦ · · · ◦ σ1(W0 +K0 + b0) ◦ P

Lifting P and projection Q are mappings P : Rda → Rdv0 and Q : RdvT → Rdu .

We add matrices Wt ∈ Rdvt+1×dvt and bias functions bt : Dt+1 → Rdvt+1 .

Integral Kernel Operators
Let κt ∈ C(Dt × Dt+1;Rdvt+1×dvt ) be a kernel function and define Kt by

Kt(vt)(y) =
∫
Dt
κt(x, y)vt(x)dx ∀y ∈ Dt+1.

Hyperparameters: Dimensions dv0 , . . . ,dvT , d1, . . . ,dT−1, domains D1, . . . ,DT−1 and σt.

→ Such an operator has universal approximation properties!
29



Continuity

Let u : X ⊂ Rd → Rc, v : Y ⊂ Rp → Rq and G : u 7→ v. For n sensor positions xi ∈ X and m
evaluation points yj ∈ Y, we write x = (xi)i, y = (yj)j, and u(x) = (u(xi))i.

Unified Operator Framework
The evaluations v(y) are approximated by the neural operator GΘ as follows:

v(y) = G(u)(y) ≈ Gθ(x,u(x), y).

In Python
v = operator(x, u, y)

with tensors of shape (adding a batch size b):

x: [b, n, d] u: [b, n, c] y: [b, m, p] v: [b, m, q]
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