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Scaling Rectified Flow Transformers for High-Resolution Image Synthesis
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combines a diffusion
transformer
architecture and flow
matching.” — March
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Achievement unlocked:

Diffusion models can spell now!




Useful for a range of
applications

* Image generation

* Cell trajectories

* Protein design

* Molecule generation

(] atong01/conditional-flow-matching ' Public

TorchCFM: a Conditional Flow Matching library
@Python 17513 % 38

Generated |mages with OT-CFM at lteratlon 40k (FID: 47.4)
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Why Flow Matching vs. Score Matching?

More general framework:

* Reduced variance in the objective
via optimal transport leads to
faster training

* Straighter inference paths via
optimal transport leads to
faster inference

* Flows are easier to implement
avoiding defining diffusion on
manifolds

Score Matching Loss

Et,q(z),pt(a?|z) ||50 (ta SU) — Vg lOg pt(l’|2’) Hg

Flow Matching Loss
Et,q(Z),pt(xlz)HUH(tv T) — Ut($|z)’|§

¥ &

Diffusion oT
Lipman et al. 2023



The Problem

Given samples from a source and
target distribution learn a function
which flows one samples from
one distribution to the other.

t
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Marginal
The Problem Probability
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Normalizing Flows (NFs)

Sample from some complicated
distribution by sampling from a
simple distribution then applying U

* Begin with a simple distribution

Py () ~ N(0,1)

7
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Normalizing Flows (NFs)

Sample from some complicated
distribution by sampling from a
simple distribution then applying U

* Begin with a simple distribution
Pro(x) ~ N (0, 1)

e Apply an invertible
transformation(s)

Lty = U(zto)

7

To




Normalizing Flows (NFs)

Sample from some complicated
distribution by sampling from a
simple distribution then applying U

* Begin with a simple distribution
Pro(x) ~ N (0, 1)

e Apply an invertible
transformation(s)

Lty = U(ibto)

7

e Use change of variables to TO
calculate probability o

log py, (x¢,) = log py, (4,) - log det 5
Lt




Deep Normalizing Flows (NFs)

Apply a series of transformations
Lty = U(xto) * Lty = UNOQUN-1 O "0 ul(xtO)

Use change of variables to calculate probability

oU

@xto

ou,,

8xtn_1

* lOg Dtn (:CtN) log Ptg xto Z lOg det

log Pty (xt1 ) log Pt (xto ) 1Og det




Continuous Normalizing Flows
Apply a series of transformations

t1
Tyy = UN O UN_1 0+ OU(Ty) l} zy, = Ul(zy,) :/t u(z(t), t)dt
0

Use change of variables to calculate probability

*lo (4,) = lo (:E)—/tlTr(au)dt
g Pt Lty g Pto Lty , @x(t)

o,
al'tn_l

log pry (Tty) = 10g pry (24,) Z log det

[Chen et al. 2018; Grathwohl et al. 2018]



Continuous Normalizing Flows

[Chen et al. 2018; Grathwohl et al. 2018]



If we knew u;(x), ps(x) we could directly regress

Action-Matchin Action-Matching (Swish) VP-CFM SB-CFM (ours) OT-CFM (ours)

CFM
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Conditional Flow Matching

* Flows between Gaussians are simple

* Any distribution can be modeled as
an infinite mixture of Gaussians

* Flow matching is the “law of total
probability” for vector fields
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Main idea

Regressing against conditional flows is equivalent to regressing against
the marginal flow in expectation.



Main idea

Regressing against conditional flows is equivalent to regressing against
the marginal flow in expectation.

Theorem: (Informally) Let u.(x) generate p.(x) and be of the form
x|z)qg(z
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Main idea

Regressing against conditional flows is equivalent to regressing against
the marginal flow in expectation.

Theorem: (Informally) Let u.(x) generate p.(x) and be of the form

) = [LEDP D)

Pe(X) ‘
then
VoE¢ .00l [ve(t, x) — u (0|15 = VoEe g2y p.0x12) | [Ve (8 X) — up(x]2)]]5
Intuition:
1ve —uc I3 = [1val12 — (vhu () + [lue (|13
1ve — u (K213 = |vel13 — (vhu. (x]2)) + e (x12)]13
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Flow Matching @7 @
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Flow Matching @ @
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Flow Matching @ @\

1 3 Diffusion oT
pe(x|z*) pe(x]|2°)

Lipman et al. 2023

1) _ AT i~

NN
L ORQQUU =
_OON

CI(xo) A

q(2) = q(xy)pe(x]2%)

o (2)

o¢(2)
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q(x1) AT A generates p;(x) given q(z)
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Conditional Flow Matching

pe(x|zt) Pt(x|23)

Lipman et al. 2023 Conditional Flow Matching Conditional OT Flow Matching
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Objective: Lerm(0) =Eq 4(2).p, (x| Vet ) — us(z|2) |3

Conditional Flow Matching
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Algorithm 1 Simplified Conditional Flow Matching

Input: Sample-able distributions X, X, bandwidth o,
batchsize b, initial network vg.

while Training do

/* Sample batches of size b i.i.d. from the datasets */
xo ~ Xo; @1~ Xy

t~U(0,1)

pe — tey + (1 — 1)z

X N(/.Lt, 0'21)

Leru(6) < [[vo(t, ) — (@1 — o)

0 Update(O, VHLCFM (9))

return vy




+ Static (mini-batch) OT Resampling Step

Algorithm 2 Minibatch OT Conditional Flow Matching
Conditional OT Flow Matching . : ;
Input: Sample-able distributions X, X, bandwidth o,
M batch size b, initial network vyg.

while Training do
/\ /\ /\ /* Sample batches of size b i.i.d. from the datasets */

& u % 0 Update(H, VQLCFM(H))

return vy

Tong et al. TMLR 2024



Why use optimal transport in flow matching?

Conditional Flow Matching Conditional OT Flow Matching

More general framework: AT A AT A
AN A AN A A

* Reduced variance in the objective
via optimal transport leads to
faster training

* Straighter inference paths via
optimal transport leads to
faster inference

* Can be applied to new problems
where we care about the paths




Why use optimal transport in flow matching?

6.0

' Model
55- =\ — |-CFM
More general framework: FM

5.0

FID

* Reduced variance in the objective
via optimal transport leads to
faster training

3.5+

* Straighter inference paths via 100000 2°°'°°°Tr§?,$"’sot‘;p4°°'°°° 500000
optlma.nl transport leads to Vodel
faster inference 30- —— I-CFM

4.5+

4.0

* Can be applied to new problems
where we care about the paths




Comparing choices of us(x|z), p;(x|z), and g;(z)

Action-Matching (Swish) VP-CFM SB-CFM (ours) OT-CFM (ours)
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Comparing choices of us(x|z), p;(x|z), and g;(z)

Probability Path

Ot ’ Cond. OT Marginal OT  General source

Var. Exploding (Song & Ermon, 2019)

Var. Preserving (Ho et al.; 2020)

Flow Matching (Lipman et al.;/2023)
Rectified Flow Liu (2022)

Var. Pres. Stochastic Interpolant Albergo & Vanden-Eijnden

Independent CFM

01—t
1-af_,
to—t+1

0

o

(Ours) Optimal Transport CFM
(Ours) Schrédinger Bridge CEFM

pe(z)

T1

a1-¢T1

t(l?l

tzy + (1 — t)zo
cos(3mt)zo + sin(Fmt)zq
try + (1 —1t)xo

try + (1 —1t)xo

try + (1 —1t)xo

LaleRAax x X
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Entropic Regularization

S(u,v) = mnian - — eH () where H(m) = — X;;m;j (logm;; — 1)

A\




Entropic Regularization with Matrix Scaling

e Gibbs kernel

_Cij

'Kl-j=eit

e S(u,v) = argminp KL(P | K)

e Pis of the form

P =diag(a) K diag(b) U

For vectors a, b

And this can be solved with
the Sinkhorn algorithm!
i.e. iterative proportional fitting

1N




-free Score and Flow Matching (SF)*M

Simulation

Tong et al. AISTATS 2024



Stochastic Differential Equations

* Stochastic Differential Equation
dr = us(x) dt + g(t) dwy

* Fokker-Plank and continuity equation

O 2(t
5,_]; = —V - (prug) J ()Apt

2
* Probability flow ODE

dr = |u(x)



Score and Flow Matching

Score and Flow Matching

LuisFizm(0) = Etr4(0,1),z~ps () [ng(t, T) — ﬂt(x)||2/+)\(t)\|39(t, ) —V logpt(x)||2j]

TV
flow matching loss score matching loss

Conditional Score and Flow Matching

Lisram(0) = Etni(0,1), 5va(2),0mpe (z12) [ V6 (L, @) — (@] 2) |2 +AE) [|s6(t, ) — Viog pe(x]2)]” ]

~~ v

conditional flow matching loss conditional score matching loss




A Geometric Intultion




Optimal Transport CFM Schrodinger Bridge CFM

Schrodinger Bridges il

A A A A_an LN\

AN A A P AN

Problem statement A A A =<\
. AN A OINTN\

P*= min KLP|Q) __ st~ Y

P:po=qo,p1=q1

“Most likely stochastic process under observation”

Diffusion Schrédinger Bridges as mixtures of Brownian bridges

pi(z) = / pi(@|z0, 21) dm 2 (w0, 1)
pe(x|xo, 1) = N(x; (1 — t)39 + to1,0%t(1 — t))




Determinstic vs. Stochastic

OT-CFM SF2M
* Learns dynamic OT paths * Learns entropic OT paths
between distributions between distributions

* Faster inference time by creating ¢ Slightly “more robust” in high
simpler flows dimensions

Lisr2m(0) = Etni(0,1), 5~a(=),0mpe(z12) [ |06 (E, @) = (@] 2) |2 +AE) [|56(t, ) — Viog pe(z]2)]” ]

\ .

~~ "

conditional flow matching loss conditional score matching loss



Applications to Biology

Disease Dynamics

* Focus: Dynamics of Metastasis

* Biological result: Characterize and disrupt the metastasis of triple negative breast cancer in mouse model
* Computational result: Learn gene regulatory networks from single-cell time series

Protein Design

Molecule Sampling (in progress)
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* Biological result: Characterize and disrupt the metastasis of triple negative breast cancer in mouse model
* Computational result: Learn gene regulatory networks from single-cell time series

Protein Design

* Focus: Designing de novo binders of difficult targets

* Biological goal: Faster, more effective, biologic drug candidates

* Computational goal: AlphaFold generates only one of many possible structures, we want all of them

Molecule Sampling (in progress)



Applications to Biology

Disease Dynamics

* Focus: Dynamics of Metastasis

* Biological result: Characterize and disrupt the metastasis of triple negative breast cancer in mouse model
* Computational result: Learn gene regulatory networks from single-cell time series

Protein Design

* Focus: Designing de novo binders of difficult targets

* Biological goal: Faster, more effective, biologic drug candidates

* Computational goal: AlphaFold generates only one of many possible structures, we want all of them

Molecule Sampling (in progress)

* Focus: Learning to sample the space of valid conformations

* Biological goal: Better sampling of the dynamics of molecules

* Computational goal: Learning flow with access to energy but no data



-raming the biological problem: Triple
Negative Breast Cancer Models of the 'y
Mesenchymal to Epithelial transition

&

CD44Micells
Highly tumorigenic Mesenchymal
Highly metastatic ZEB1+CDH 1-

Chemo-resistant

MET
Cancer cell plasticity
EMT

CD44'c cells
Not tumorugen!c Epithelial
Not metastatic CDH1+ ZEB1-
Chemo-sensitive

* TNBC has no know targeted therapies

Tong*, Kuchroo*, et al. 2023



-raming the biological problem: Triple /abé ﬁ
=
=

Negative Breast Cancer Models of the
Mesenchymal to Epithelial transition

3D Tumorsphere model

CD44Hicells
Highly tumorigenic .
Highly metastatic xE?lTéSlYiT-al Day 14 Day 21 Day 28 Mesenchymal-like

Chemo-resistant

MET
Cancer cell plasticity
EMT

CD44'e cells

* TNBC has no know targeted therapies
* MET requires 3D cultures

uolssalidx3 1937

Epithelial-like

Tong*, Kuchroo*, et al. 2023



-raming the biological problem: Triple /g\
Negative Breast Cancer Models of the r '
Mesenchymal to Epithelial transition

3D Tumorsphere model

CD44Hi @::@lJE%@

Highly tumorigen '
Highly metastatic ;fz‘;sle:‘égzi"l"_a' Day 14 Day 21 Day 28 Mesenchymal-like
Chemo-resistant N
m
MET @
Cancer cell plasticity _g'
=4
EMT &
CD44' cells 5
Not tumorigenic Epithelial S
Not metastatic
CDH1+ ZEB1- . . .
Chemo-sensitive Epithelial-like

* TNBC has no know targeted therapies
* MET requires 3D cultures

What drives the MET cell state transition in TNBC?

Tong*, Kuchroo*, et al. 2023



-raming the biological problem: Triple
Negative Breast Cancer Models of the -
Mesenchymal to Epithelial transition

CD44gHicells Tumorsphere assay
- oo PR Epithelial /
Highly tumorigenic y Mesenchyrial Mezlensi:?/mal ﬂ
Highly metastatic | ! ZEB1+CDH1-

Chemo-resistant

MET
Cancer cell plasticity
EMT

CDA44'o cells
Not tumongen!c Epithelial
Chemo-sensitive

* TNBC has no know targeted therapies
* MET requires 3D cultures

e

Temporal scRNAseq analysis

Samples collected at:

®----» . ...... > ‘ ...... ;. ...... >‘

DO D2 D12 D18 D30

Tong*, Kuchroo*, et al. 2023



A bit about single-cell data

* Transcriptomics is cheap!

* Destructive

* DNA = RNA - Protein

* Each cell is a vector in Rgo

* 1k to 10M cells 10-10k features

Samples
(1-100+)

Cells
(1K -10M)

Genes / Proteins
(10-10K)



The general biological problem _

— Destructive Measurements

Underlying Trajectories

Cell State




The general biological problem _

— Destructive Measurements

Underlying Trajectories Unpaired Samples
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The general biological problem _

— Destructive Measurements

Underlying Trajectories Unpaired Samples
Single-cell %
sequencing ® 'o.o. ®
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* Learning underlying trajectories from unpaired samples



The general biological problem _

— Destructive Measurements

Underlying Trajectories Unpaired Samples
Single-cell o
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* Learning underlying trajectories from unpaired samples
* Many trajectories for unpaired samples but which should we pick?



The general biological problem _

— Destructive Measurements

Underlying Trajectories Unpaired Samples
Single-cell
sequencing
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* Learning underlying trajectories from unpaired samples
* Many trajectories for unpaired samples but which should we pick?



The general biological problem _

— Destructive Measurements

Underlying Trajectories Unpaired Samples
Single-cell
sequencing
L
©
i p) .o.‘.:
3 : %0 : o6
“ € .. Notthis! ",
v
To T T2 -+ TN To T T2 = 1IN

* Learning underlying trajectories from unpaired samples
* Many trajectories for unpaired samples but which should we pick?
e Conjecture: Paths minimize some energy / cost (evolutionary fitness)



Embryoid Bodies

Embryoid Body Progenitors

Ectoderm Cardiac

Mesoderm

Computational Solution: TrajectoryNet ¢

Hematopoietic

SS=
\ Neural
Stem
cells
@ -
Colony in

suspension

® Day 00-03 @® Day 00-03
Day 06-09 Day 06-09
Day 12-15 Day 12-15
Day 18-21 Day 18-21
® Day 24-27 ® Day 24-27

Time

* Dots are cells colored by measurement time
* Lines indicate TrajectoryNet predicted trajectories
* Lighter indicates dense region of cells over time

2 3 4

Tong et al. 2020 ICML




Embryoid Bodies

Embryoid Body Progenitors

Computational Solution: TrajectoryNet

* Recover “optimal”
trajectories with
respect to some
distance

® Day 00-03
Day 06-09
Day 12-15
Day 18-21
® Day 24-27

* Can be learned using
Flow Models

0 1 2 3 4

Tong et al. 2020 ICML



Continuous normalizing flows for single-cell

TrajectoryNet (Tong et al. 2020) MioFlow (Huguet et al. 2022)
 Maximum likelihood loss  Particle-based OT loss
* Ambient space * Geodesic Autoencoder

diffusion geodesic distance

Neural Network

'/
ﬁx
\
X
<
X

Latent
Space

T o AHK \_/ ‘
A ]~ el
a1 Kb e VI:{> :(>
i! So 1Hep ]I~ ODE Solver Loss( ', )
a 1| MIelR Y
1] - © O E )
@,

=

noise predicted t1

Geodesic O
AutoEncoder 5 O O O OO
t OO

ground truth



Applying back to triple negative breast cancer

Q: What drives the MET cell state
transition in breast cancer?

Method:

* Learn cell trajectories

PHATE1

Tong*, Kuchroo*, et al. 2023



Applying back to triple negative breast cancer

Q: What drives the MET cell state Genes

Cluster 1  Cluster 2 Cluster 3 Cluster 4 Cluster 5

transition in breast cancer?
Method:

* Learn cell trajectories

« Compute a pairwise gene regulatory
network using granger causality

Cluster 1

Cluster 3 Cluster 2

Transcription Factors

Cluster 4

Cluster 5

Tong*, Kuchroo*, et al. 2023



Applying back to triple negative breast cancer

-~ @@ Upregulated in Epithelial Trajectory

. O Downregulated in Epithelial Trajectory
Q: What drives the MET cell state

transition in breast cancer? —E—

Method:

: : —
* Learn cell trajectories @
* Compute a pairwise gene regulatory

network using granger causality ARNT?'J

* Filter based on prior knowledge @ ¥
=)
B s,

—

-

Tong*, Kuchroo*, et al. 2023



Applying back to triple negative breast cancer

Q: What drives the MET cell state

transition in breast cancer?
Method:

* Learn cell trajectories

« Compute a pairwise gene regulatory
network using granger causality

* Filter based on prior knowledge

Validation:
* siRNA knockouts

*ok
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Tong*, Kuchroo*, et al. 2023



Applying back to triple negative breast cancer

Q: What drives the MET cell state

transition in breast cancer? — Control
C14

Method: — DTX

* Learn cell trajectories 1500 — DTX+C14

« Compute a pairwise gene regulatory
network using granger causality

* Filter based on prior knowledge

Validation:
* siRNA knockouts
e Knock out ESRRA driver in mice

=N
o
o
o
|

500

Tumour Vol (mm3)

Days

Tong*, Kuchroo*, et al. 2023



Applying back to triple negative breast cancer

Q: What drives the MET cell state
transition in breast cancer?

Method:

* Learn cell trajectories

« Compute a pairwise gene regulatory
network using granger causality

* Filter based on prior knowledge

Validation:
* siRNA knockouts
e Knock out ESRRA driver in mice

Takeaways:

* Reducing ESRRA reduces metastasis in
mouse

* TrajectoryNet + Granger causality can
discover novel gene regulators

——  Control

C14
— DTX
1500- DTX + C14
n
£
£ 1000-
)
=
3
S 500~
=
0-

Days

Tong*, Kuchroo*, et al. 2023



Applications to Biology

Disease Dynamics

* Focus: Dynamics of Metastasis

* Biological result: Characterize and disrupt the metastasis of triple negative breast cancer in mouse model
* Computational result: Learn gene regulatory networks from single-cell time series



Applications to Biology

Protein Design

* Focus: Designing de novo binders of difficult targets

* Biological goal: Faster, more effective, biologic drug candidates

* Computational goal: AlphaFold generates only one of many possible structures, we want all of them



FoldFlow — SE(3) Stochastic Flow Matching

A flow matching method for protein backbone generation
FoldFlow — Base FoldFlow — OT FoldFlow — SFM
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Joint work with the Dreamfold team: Bose*, Akhound-Sadegh*, G. Huguet, J.
Rector-Brooks, C. Liu, A. Nica, M. Korablyov, M. Bronstein, A. Tong Accepted at ICLR 2024 (spotlight)



The Problem: Protein Design

* Biological Problem:
* Given a protein sequence its structure determines function
* Given a sequence the number of 3D structures is enormous 107300 (length 20)

e Out of all possible folds, most are not stable. We would like to design 3D
structures for which there exists a sequence (designable).

 Computational Problem:

* Generate designable 3D conformations either unconditionally or conditioned on
some function / sequence / structure.



Flows for Proteins

* Build a flow over SE(3)Ni.e.
the manifold of N 3D
translations and rotations

e Same space as AlphaFold2
folding module uses

* Leverages engineering in
diffusion models for a flow
model



Flows over SE(3)

* Flows in SE(3) are flows over Translations R(3) and Rotations SO(3)

e Recent models such as RFDiffusion and FrameDiff use the score of the
isotropic Gaussian in SO(3) is
£/2 sin((l + 1/2)w)

_ 9 1)e—l(+1)
IGSO3(w,t) Z( [+1)e sin(w/2)

leN
* Instead, only need flows over SO(3)

ug(1¢|2) = log,, (ro)/t




Structure-First Protein Design

1. Design a backbone in 3D
using a generative flow
model

2. Use Inverse-folding
model to find many
sequences for that  icwrsromver

AGWFTPHQMVKSYELIAGWF
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3. Refold those structures
to find structures that
fold to the generated
conformation

Generative
Flow Model

Inverse
Folding
Model

RMSD

Folding
Model




Evaluation

Designability Novelty Diversity (|) iters/sec ()
Fraction (1) scRMSD () Fraction (1) avg. max TM (])

REDiffusion 0.969 4+ 0.023 0.650 £0.136 *0.708 £ 0.060 *0.449 £ 0.012 0.256 —
Genie 0.581 & 0.064 2.968 £+ 0.344 *0.556 £ 0.093 *0.434 £ 0.016 0.228 —
FrameDiff-ICML 0.402 +£ 0.062 3.885+0.415 0.176 £0.124 0.542 + 0.046 0:237 —
FrameDiff-Improved 0.555 £ 0.071 2.929 £0.354  0.296 = 0.112 0.457 £+ 0.026 0.278 —
FrameDiff-Retrained _0.612 4+ 0.060  2.990 + 0.307 0.684 + 0.032 0.403 1.278
FOLDFLOW-BASE 0.6 0.04 3.000 = 0.271 0.432 £+ 0.074 0.452 £+ 0.024 0.264 2.674
FOLDFLOW-OT 0.820 4+ 0.037f 1.806 £ 0.249 §0.484 £ 0.068 0.460 + 0.020 0.247 2.673
FOLDFLOW-SFM 0.716 = 0.040f 2.296 £ 0.391 0.544 + 0.061 0.411 + 0.023 0.248 2.647




Foldflow: Sampling conformations

e Start from any distribution = use better inductive bias
* Learn conformation distribution, starting from a folded structure

Foldflow AlphaFold2
10?
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1071
1072 g
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/2

—n/2
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[ FoldFlow
I AlphaFold2
0
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Flows for Protein Backbones

e Results in
e Simpler code vs. diffusion
* Faster training
* Faster inference

e Future work

* Conditioning on sequence
* More controllable generation

* More ideas from generative
models



Applications to Biology

Protein Design

* Focus: Designing de novo binders of difficult targets

* Biological goal: Faster, more effective, biologic drug candidates

* Computational goal: AlphaFold generates only one of many possible structures, we want all of them



Applications to Biology

Molecule Sampling (in progress)

* Focus: Learning to sample the space of valid conformations

* Biological goal: Better sampling of the dynamics of molecules

* Computational goal: Learning flow with access to energy but no data



IDEM: Iterated Denoising Energy Matching

Replay buffer 8 Diffusion sampler
L simulation-based \\S\egt/?/

( : outer loop §§\§"f/f * Goal: Sample proportional to
@ '.(; = integrate reverse }\_’\:;\"EZ'%VI%M dan (UnnOrmalized) energy
G L Tsoeorn | IR .

* Smooth energy over time
4 L using diffusion noising
. . optimize sy at x;
sample sm.lulatl(l)n free using DEM process
inner loop Fio 2
\j ((x) =

E (X) *N (0,0't)

/\\ * First simulation-free training
add noise ><

method using a matching loss
to match the score

Sample xg

Noisy samples x;

Akhound-Sadegh, Rector-Brooks, Bose, ... Tong, 2024



IDEM: Iterated Denoising Energy Matching

Denoising diffusion DEM
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Evaluation

* Faster and more scalable than previous methods
e Still useful to have some simulation for better training

Table 2. Sampler performance with mean + standard deviation over 3 seeds for negative log-likelihood (NLL), Total Variation (TV), and
2-Wasserstein metrics (V2). * indicates divergent training. Bold via Welch’s two sample t-test p < 0.1. See §F.2 for more details.

Energy — GMM (d = 2) DW-4 (d = 8) LJ-13 (d = 39) LJ-55 (d = 165)
Algorithm | NLL TV Wo NLL TV Wo NLL TV Wo NLL TV Wo
FAB (Midgley et al., 2023b) 7.14+0.01  0.88+0.02 12.0+5.73  7.16+0.01  0.09+0.00 2.15+0.02 17.52+0.17 0.04+0.00 4.35+0.01 200.32+62.3 0.24+0.09  18.03+1.21
PIS (Zhang & Chen, 2022) 7.724+0.03 0.92+0.01  7.64+0.92 7.19+0.01 0.09+0.00 2.13+0.02 47.05+12.46 0.25+0.01 4.67+0.11 * * *
DDS (Vargas et al., 2023) 7434046 0.82+0.02 9.31+0.82 11.27+1.24 0.16+0.01 2.15+0.04 * * * * * *
pDEM (ours) 7.10+0.02 0.82+0.02 12.20+0.14 7.44+0.05 0.13+0.00 2.11+0.03 18.80+0.48 0.06+0.02 4.21+0.06 * * *

iDEM (ours) 6.96+0.07 0.82+0.01 7.42+3.44 717+0.00 0.10+0.01 2.13+0.04 17.68+0.14 0.04+0.01 4.26+0.03 125.86+18.03 0.09+0.01 16.128+0.071




DEM: Learning to sample an energy function

 Extensible to incorporate symmetries: we can learn a SE(3)x S,
equivariant score network

* Scalable to high dimensions & much faster
LJ55 (165 dimensions)

0.030- FAB
iDEM (ours)
Ground Truth

Normalized Density
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T. Akhound Sadegh & J. Rector-Brooks et al., under review. arXiv:2402.06121



Why Flow Matching vs. Score Matching?

More general framework:

* Reduced variance in the objective
via optimal transport leads to
faster training

* Straighter inference paths via
optimal transport leads to
faster inference

* Flows are easier to implement
avoiding defining diffusion on
manifolds
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