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Stable 
Diffusion 3
“Stable Diffusion 3 
combines a diffusion 
transformer 
architecture and flow 
matching.” – March 
5, 2024



Useful for a range of 
applications
• Image generation
• Cell trajectories
• Protein design
• Molecule generation

Tong et al. TMLR 2024



Why Flow Matching vs. Score Matching?

More general framework:
• Reduced variance in the objective 

via optimal transport leads to 
faster training
• Straighter inference paths via 

optimal transport leads to      
faster inference
• Flows are easier to implement 

avoiding defining diffusion on 
manifolds

Score Matching Loss

Flow Matching Loss

Lipman et al. 2023



The Problem

Given samples from a source and 
target distribution learn a function 
which flows one samples from 
one distribution to the other.
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Normalizing Flows (NFs)

Sample from some complicated 
distribution by sampling from a 
simple distribution then applying U
• Begin with a simple distribution

• Apply an invertible 
transformation(s)

• Use change of variables to 
calculate probability
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Deep Normalizing Flows (NFs)

Apply a series of transformations 

Use change of variables to calculate probability
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If we knew 𝑢!(𝑥), 𝑝!(𝑥)	we could directly regress 

Marginal 
field 𝑢!(𝑥)

Marginal 
Probability 
𝑝!(𝑥)

Flow Matching loss: 𝐿%& 𝜃 = 𝔼!,(! ) ||𝑣* 𝑡, 𝑥 − 𝑢! 𝑥 ||++

Time 
dependent 
flow 𝑈!(𝑥")



Conditional Flow Matching

• Flows between Gaussians are simple
• Any distribution can be modeled as 

an infinite mixture of Gaussians
• Flow matching is the “law of total 

probability” for vector fields



Regressing against conditional flows is equivalent to regressing against 
the marginal flow in expectation.

Main idea
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Conditional Flow Matching
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Objective: 



+ Static (mini-batch) OT Resampling Step

Tong et al. TMLR 2024



Why use optimal transport in flow matching?

More general framework:
• Reduced variance in the objective 

via optimal transport leads to 
faster training
• Straighter inference paths via 

optimal transport leads to      
faster inference
• Can be applied to new problems 

where we care about the paths
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Comparing choices of 𝑢!(𝑥|𝑧), 𝑝!(𝑥|𝑧), and 𝑞!(𝑧) 
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Exact Solution 𝑊 𝜇, 𝜈 = 	min
"
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Entropic Regularization

S 𝜇, 𝜈 = 	min
<
∑𝑐 ⋅ 𝜋 − 𝜖𝐻 𝜋 	 𝑤ℎ𝑒𝑟𝑒	𝐻 𝜋 = −	∑=> 𝜋=> (log 𝜋=> 	− 1)



𝑐𝜇

𝜈

Entropic Regularization with Matrix Scaling

• Gibbs kernel

• 𝐾!" = 𝑒
%&'(
)

• 𝑆 𝜇, 𝜈 = 𝑎𝑟𝑔𝑚𝑖𝑛!	𝐾𝐿 𝑃	 𝐾)

• P is of the form
• 𝑃 = 𝑑𝑖𝑎𝑔(𝑎)	𝐾	𝑑𝑖𝑎𝑔(𝑏)
For vectors a, b

And this can be solved with
the Sinkhorn algorithm!
i.e. iterative proportional fitting

𝐾



Simulation-free Score and Flow Matching (SF)2M

Tong et al. AISTATS 2024



Stochastic Differential Equations

• Stochastic Differential Equation

• Fokker-Plank and continuity equation

• Probability flow ODE



Score and Flow Matching

Score and Flow Matching

Conditional Score and Flow Matching



A Geometric Intuition

xt

ût(xt|x0, x1)

∇ log pt(xt|x0, x1)x0

x1

x′

0

x′

1

t



Schrödinger Bridges

Problem statement

“Most likely stochastic process under observation”

Diffusion Schrödinger Bridges as mixtures of Brownian bridges



Determinstic vs. Stochastic

OT-CFM

• Learns dynamic OT paths 
between distributions
• Faster inference time by creating 

simpler flows

SF2M

• Learns entropic OT paths 
between distributions
• Slightly “more robust” in high 

dimensions



Applications to Biology
Disease Dynamics
• Focus: Dynamics of Metastasis
• Biological result: Characterize and disrupt the metastasis of triple negative breast cancer in mouse model
• Computational result: Learn gene regulatory networks from single-cell time series

Protein Design
• Focus: Designing de novo binders of difficult targets
• Biological goal: Faster, more effective, biologic drug candidates
• Computational goal: AlphaFold generates only one of many possible structures, we want all of them

Molecule Sampling (in progress)
• Focus: Learning to sample the space of valid conformations
• Biological goal: Better sampling of the dynamics of molecules
• Computational goal: Learning flow with access to energy but no data
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A bit about single-cell data

• Transcriptomics is cheap!
• Destructive
• DNA à RNA à Protein
• Each cell is a vector in ℝB"C

• 1k to 10M cells 10-10k features



The general biological problem
– Destructive Measurements

Underlying Trajectories

What drives the MET cell 
state transition in TNBC?



Underlying Trajectories Unpaired Samples

Single-cell 
sequencing

The general biological problem
– Destructive Measurements

What drives the MET cell 
state transition in TNBC?



Underlying Trajectories Unpaired Samples

Single-cell 
sequencing

The general biological problem
– Destructive Measurements

?

What drives the MET cell 
state transition in TNBC?

• Learning underlying trajectories from unpaired samples
• Many trajectories for unpaired samples but which should we pick?
• Conjecture: Paths minimize some energy / cost (evolutionary fitness)



Underlying Trajectories Unpaired Samples

Single-cell 
sequencing

The general biological problem
– Destructive Measurements

?

What drives the MET cell 
state transition in TNBC?

• Learning underlying trajectories from unpaired samples
• Many trajectories for unpaired samples but which should we pick?
• Conjecture: Paths minimize some energy / cost (evolutionary fitness)



Underlying Trajectories Unpaired Samples

Single-cell 
sequencing

The general biological problem
– Destructive Measurements

?
Not this!

What drives the MET cell 
state transition in TNBC?

• Learning underlying trajectories from unpaired samples
• Many trajectories for unpaired samples but which should we pick?
• Conjecture: Paths minimize some energy / cost (evolutionary fitness)



Underlying Trajectories Unpaired Samples

Single-cell 
sequencing

The general biological problem
– Destructive Measurements

?

• Learning underlying trajectories from unpaired samples
• Many trajectories for unpaired samples but which should we pick?
• Conjecture: Paths minimize some energy / cost (evolutionary fitness)

Not this!

What drives the MET cell 
state transition in TNBC?



Tong et al. 2020 ICML

• Dots are cells colored by measurement time 
• Lines indicate TrajectoryNet predicted trajectories
• Lighter indicates dense region of cells over time

Computational Solution: TrajectoryNet



Computational Solution: TrajectoryNet

• Recover “optimal” 
trajectories with 
respect to some 
distance
• Can be learned using 

Flow Models

Tong et al. 2020 ICML



Continuous normalizing flows for single-cell

TrajectoryNet (Tong et al. 2020)
• Maximum likelihood loss
• Ambient space

MioFlow (Huguet et al. 2022)
• Particle-based OT loss
• Geodesic Autoencoder



Tong*, Kuchroo*, et al. 2023

Applying back to triple negative breast cancer

Q: What drives the MET cell state 
transition in breast cancer?
Method:

• Learn cell trajectories
• Compute a pairwise gene regulatory 

network using granger causality
• Filter based on prior knowledge
• siRNA knockouts
• Knock out ESRRA driver in mice

Takeaways:
• Reducing ESRRA reduces metastasis in 

mouse
• TrajectoryNet + Granger causality can 

discover novel gene regulators
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FoldFlow – SE(3) Stochastic Flow Matching
A flow matching method for protein backbone generation
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FoldFlow − Base FoldFlow − OT FoldFlow − SFM

Joint work with the Dreamfold team: Bose*, Akhound-Sadegh*, G. Huguet, J. 
Rector-Brooks, C. Liu, A. Nica, M. Korablyov, M. Bronstein, A. Tong Accepted at ICLR 2024 (spotlight)



The Problem: Protein Design

• Biological Problem: 
• Given a protein sequence its structure determines function
• Given a sequence the number of 3D structures is enormous 10^300 (length 20)
• Out of all possible folds, most are not stable. We would like to design 3D 

structures for which there exists a sequence (designable). 

• Computational Problem:
• Generate designable 3D conformations either unconditionally or conditioned on 

some function / sequence / structure.



Flows for Proteins

• Build a flow over SE(3)N i.e. 
the manifold of N 3D 
translations and rotations
• Same space as AlphaFold2 

folding module uses
• Leverages engineering in 

diffusion models for a flow 
model



Flows over SE(3)

• Flows in SE(3) are flows over Translations R(3) and Rotations SO(3)
• Recent models such as RFDiffusion and FrameDiff use the score of the 

isotropic Gaussian in SO(3) is

• Instead, only need flows over SO(3)



Structure-First Protein Design

1. Design a backbone in 3D 
using a generative flow 
model

2. Use Inverse-folding 
model to find many 
sequences for that 
structure

3. Refold those structures 
to find structures that 
fold to the generated 
conformation

Inverse 
Folding 
Model

Generative 
Flow Model

Folding 
Model

MVKSYELIAGWFTPHQMVKS
YELIAGWFTPHQMVKSYELI
AGWFTPHQMVKSYELIAGWF
TPHQMVKSAGWFTPHQMVK
SYELIAGWFTPHQMVKSYEL

RMSD



Evaluation



Foldflow: Sampling conformations

71

•  Start from any distribution = use better inductive bias
•  Learn conformation distribution, starting from a folded structure

Foldflow AlphaFold2



Flows for Protein Backbones

• Results in
• Simpler code vs. diffusion
• Faster training
• Faster inference

• Future work
• Conditioning on sequence
• More controllable generation
• More ideas from generative 

models



Applications to Biology
Disease Dynamics
• Focus: Dynamics of Metastasis
• Biological result: Characterize and disrupt the metastasis of triple negative breast cancer in mouse model
• Computational result: Learn gene regulatory networks from single-cell time series

Protein Design
• Focus: Designing de novo binders of difficult targets
• Biological goal: Faster, more effective, biologic drug candidates
• Computational goal: AlphaFold generates only one of many possible structures, we want all of them

Molecule Sampling (in progress)
• Focus: Learning to sample the space of valid conformations
• Biological goal: Better sampling of the dynamics of molecules
• Computational goal: Learning flow with access to energy but no data



Applications to Biology
Disease Dynamics
• Focus: Dynamics of Metastasis
• Biological result: Characterize and disrupt the metastasis of triple negative breast cancer in mouse model
• Computational result: Learn gene regulatory networks from single-cell time series

Protein Design
• Focus: Designing de novo binders of difficult targets
• Biological goal: Faster, more effective, biologic drug candidates
• Computational goal: AlphaFold generates only one of many possible structures, we want all of them

Molecule Sampling (in progress)
• Focus: Learning to sample the space of valid conformations
• Biological goal: Better sampling of the dynamics of molecules
• Computational goal: Learning flow with access to energy but no data



iDEM: Iterated Denoising Energy Matching

• Goal: Sample proportional to 
an (unnormalized) energy
• Smooth energy over time 

using diffusion noising 
process

• 𝐸! 𝑥 = D ) "#!	
D ) ∗F(",G!)

 

• First simulation-free training 
method using a matching loss 
to match the score

Akhound-Sadegh, Rector-Brooks, Bose, … Tong, 2024



iDEM: Iterated Denoising Energy Matching



Evaluation

• Faster and more scalable than previous methods
• Still useful to have some simulation for better training



DEM: Learning to sample an energy function

78

•  Extensible to incorporate symmetries: we can learn a 𝑆𝐸 3 𝑥	𝕊H 
equivariant score network
•  Scalable to high dimensions & much faster

LJ55 (165 dimensions)

T. Akhound Sadegh & J. Rector-Brooks et al., under review. arXiv:2402.06121



Why Flow Matching vs. Score Matching?

More general framework:
• Reduced variance in the objective 

via optimal transport leads to 
faster training
• Straighter inference paths via 

optimal transport leads to      
faster inference
• Flows are easier to implement 

avoiding defining diffusion on 
manifolds



Thank you!

• Bengio Lab
• Krishnaswamy Lab
• RAFALES group
• Theis Lab


