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Introduction



Interpretability, why?

- Deep Neural Networks are very powerful but black boxes
- Why should we trust these models for high stake decisions?

- Decision trees or linear classifiers are intrinsically interpretable but
not very powerful

The goal is to define a form of interpretability in image processing sim-
ilar to the way humans describe their thinking in classification tasks.



Interpretability, why?

- Explaining a model with post-hoc explanations, such as saliency maps,
doesn't work [6]

Evidence for animal being a transverse flute

Evidence for animal being a Siberian husky

Test image

Explanations using
attention maps

- Part-based attention methods expose the parts of an input image the
network focuses on when making decisions but not the relationship to

prototypical cases



Prototypical Part Network



Proto P-Net [1]

- Stop explaining a black box model — create an interpretable model!
- Focus on fine-grained image recognition task

- How would you classify the bird in the picture as a clay colored
sparrow?
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Proto P-Net

- Stop explaining a black box model — create an interpretable model!
- Focus on fine-grained image recognitionn task

- How would you classify the bird in the picture as a clay colored
sparrow?
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Proto P-Net

- Aregular CNN with an additional 1x1 convolutional layer on top to
extract a latent representation z € R

Vgg, ResNet, DensNet

Similarity score

.
Convolutional layers / Prototype layer g Fully connected layer & Output logits



Proto P-Net

- A prototype layer g, is added for interpretability.

- The network learns m prototypes per class of dimensions HixW1xD,
where D is the same dimension as the convolutional output

- A prototype can be seen as the latent representation of an image patch

o) Similarity score

-
Convolutional layers f Prototype layer gp Fully connected layer /i Output logits
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Proto P-Net

- Each unit gy, in the prototype layer computes the L2 distances between
all latent patches and prototype p; and inverts the distances in
similarity scores

- An activation map of similarity scores is obtained for each prototype
and it indicates how strong a prototypical part is present in the image

- The activation maps are reduced to a single similarity score by max
pooling

Fully comnected layer s Output logits
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Proto P-Net

- Afully connected layer multiplies each m similarity score with the
weight matrix Wy, to obtain the logits

- Afinal softmax layer normalize the logits to get the class probabilities
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Training algorithm

The training of ProtoPNet is divided into three steps:

1. Stochastic Gradient Descend of layers before the last one
2. Projection of prototypes

3. Convex optimization of last layer

13



Training algorithm - 1

- Convolutional layers weon and prototypes P = {p;}"; are trained
together by optimizing:

P,weony N 4

min 1 Z Crsknt(h o gp o f(X;), Vi) + MClst + X2Sep
i=1
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Training algorithm - 1

- Convolutional layers weny and prototypes P = {p;}; are trained
together by optimizing:

1o
pTvC';VHZOSEm(hngOf(xi)’yi)+ MClst + A\Sep
=1

- Cluster cost: each training image should have a latent patch similar to
at least one prototype of its own class

n

1 3 2
CISt = E Z mlnfiplepy, mi"zepalches(f(x,)) ||Z - pll ‘2
i=1
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Training algorithm - 1

- Convolutional layers weony and prototypes P = {p;}/; are trained
together by optimizing:

1 ¢
Jmin Z Crsent(h o gp o f(Xi), Vi) + MiClst + X,Sep
=1

- Cluster cost:
,I n
— h . . J— . 2
Clst = ﬁ § : mlnliplepy, MiNze patches(f(x;)) | ‘Z ijQ
i=1

- Separation cost: each training image should have all latent patches
away from the prototypes of the other classes

T, 2
Sep = _E Z mlnfipj¢Py, minze patches(f(x;)) HZ - pj||2
i=1



Training algorithm - 1

- Convolutional layers weony and prototypes P = {p;}Z; are trained
together by optimizing:
min — Z Crsent(h o gp o f(Xi), Vi) + MiClst + X;Sep

P.Weonv N —

- Cluster cost:
n

1 . 2
Clst = E Z m/nj:pjgpy’ minzeuatches(f(x,)) | ‘Z - p/| ‘2
i=1

- Separation cost:
2
Sep=—— me} P EPy; minge parches(fix;) HZ pill2

i=1

- The last layer wy, is fixed:

Wff’j) =1V jwith p; € Prand wff’j) = —0.5Vj with p; ¢ Py



Training algorithm - 2

- Each prototype is projected into the nearest latent training patch with
the following update step:

p; < argminzez||z — pjll2

- A prototype can be visualized as a training patch

- This prototype projection step doesn’t change the prediction accuracy
of ProtoPNet and it is done every 10 epochs during the training



Training algorithm -3

- Last linear classifier optimization:

min Z CrsEnt(h o gp o f(X), Vi) + )\Z > i

k= 1]P¢P,e

- Parameters from the convolutional layers and prototypes are fixed

- For each class, a L, regularization term penalizes the prototypes that
don’t belong to the class.

- The model relies less on "negative” reasoning process thanks to the
sparsity property:

w!™ 0 for k and j with p; ¢ Py
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Reasoning process

- Why is this bird classified as a red-bellied woodpecker?
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Reasoning process

Original image Prototype Training image  Activation map  Similarity Class  Points
(box showing part that where prototype score  connection contributed
looks like prototype)

6.499 x 1.180 = 7.669

4392 x 1.127 = 4950

3.890 x 1.108 = 4310

Total points to red-bellied woodpecker: 32.736
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Reasoning process

Original image Prototype  Training image  Activation map ~ Similarity Class  Points Original image Prototype  Training image  Activation map. <\m|\an|\, Class  Points
(box showing part that where prototype score  connection contributed (box showing part that where prototype ore connection contributed

Iooks like prototype) comes from looks like prototype)
. 2452 % 1.046 = 2.565

4&‘3 . 2125 x 1091 = 2318

¥ - 2

% . 1.945 % 1069 = 2.079

“Total poins o rec-belled woodpecker: 32.736 “Tota poins o rec-cockaded woodpecker: 16,886

6.499 x 1.180 = 7.669
4392 x 1.127 = 4950

3.890 x 1.108 = 4310
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Results

Loss of accuracy at most 3.5%

Base ProtoPNet | Baseline Base ProtoPNet | Baseline

VGG16 76.1+£0.2 | 74.6 £0.2 || VGGI9 78.0+£02 | 75.1+£04
Res34 79.2+£0.1 | 823 £0.3 || Resl52 78.0 £ 03 | 81.5+ 04
Densel121 | 80.2+0.2 | 80.5+ 0.1 || Densel61 | 80.1 £ 0.3 | 82.2+0.2
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Results

Loss of accuracy at most 3.5%

- Accuracy can also be improved by combining multiple ProtoPNet
models

- Comparison with part-level attentions methods

Interpretability Model: accuracy
None B-CNN[25]: 85.1 (bb), 84.1 (full)
Object-level attn. | CAM[56]: 70.5 (bb), 63.0 (full)
Part R-CNN[53]: 76.4 (bb+anno.); PS-CNN [15]: 76.2 (bb+anno.);
PN-CNN [3]: 85.4 (bb+anno.); DeepLAC[24]: 80.3 (anno.);
Part-level SPDA-CNNI52]: 85.1 (bb+anno.); PA-CNN[19]: 82.8 (bb);
MG-CNN[46]: 83.0 (bb), 81.7 (full); ST-CNN[16]: 84.1 (full);
2-level attn.[49]: 77.9 (full); FCAN[26]: 82.0 (full);
Neural const.[37]: 81.0 (full); MA-CNN[55]: 86.5 (full);
RA-CNN[7]: 85.3 (full)
Part-level attn. + = ProtoPNet (ours): 80.8 (full, VGG19+Densel121+Dense161-based)
prototypical cases 84.8 (bb, VGG19+ResNet34+DenseNet121-based)

attention

2%



Neural Prototype Tree



Proto Tree [

- A Neural Prototype Tree (ProtoTree) combines prototypes learning and
a decision binary tree

- Asingle prediction is explained by outlining a decision path through
the tree (global explanation)

- "Guess who?” game: binary questions to underline visual properties to
predict the class of the input image

» https://github.com/aai-institute/ProtoTree/tree/main

Nothalch  ~Tree Swallow

Clark Nufcracker  European Goldine
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https://github.com/aai-institute/ProtoTree/tree/main

Architecture

- A CNN extracts a feature maps z of dimension HxWxD

- This latent representation z is the input to a soft binary tree (both
children of a node are always visited)

Nearest, Pe(ny.ny)=exp(=[|2=pill)
W patch z

Prototype p1

D,
i De(na,nz)
B —02
)
Pe(na , L3 De(nz,t4) 9=
= 04 <06, =09 SO0l 0204 0(er) + 0.6+ 0(es))
/F 0.8(0.9 - o(cz) +0.1-0(eq))
Feature maps z a(er) o(e2) o(es) o(ea) = Hma
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Architecture

- Each node of the tree is a trainable prototype p, of dimension HixWixD

- The L, distance is computed between each prototype and all the
patches Z of the latent representation.

- Min pooling operation to select the closest latent patch z*
- zis routed through both children with probabilities:

pe(n,n.r(ght)(z) = eXp(_Hi* - pn||)

pe(n,meﬂ) =1- Pe(n,n.right)

Neéar]esy« Pe(ny,nz)= exp(—[|2= pil|)
w patchz Prototype P1

5.04) g=
L 02(04-0(er) + 0.6 0(c2))
+0.8(0.9- 0(e3) +0.1- o(es))

(c1) By ™ 27

Feature maps z a(e1) o(c2) a(es)



Architecture

- Each leaf is reached with probability equals to the product of
probabilities of the edges of the followed path:
71(2) = Meer,Pe((2))
- A sigmoid function is applied to the trainable parameter of each leaf to
get the final class distribution:

§(x) = > o(c) - w(f(x;w))

leL

Netarhes_t* Pe(ny,ng)= exp(=||2= p1l])
W patch z

Prototype p1

SN 0.2(0.4 - 0(e) + 0.6 0(co)

)
/F 0.8(0.9 - o(cs) +0.1- 0(cq))

Feature maps z
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Proto Tree Training

The training of a ProtoTree follows these steps:

- Prototypes P and parameters w of the CNN are trained together by
minimizing the cross entropy loss between the class probability
distribution § and the ground-truth y

- Pand w are then updated with gradient descent

- We update leaves distribution with a derivative-free strategy:

=3 "(o(c) oyom) o9

X,yeT

29



- Pruning operation to reduce the K=praned -
number of prototypes and Tlr}(“
augment interpretability

Tale

- All leaves with a distribution
similar to a uniform one are MQ/L&LJLL’LJJU
removed

max(o(c)) <7 lL

- If all leaves of a subtree are
pruned, then the subtree is X = pruned
removed T,>(‘)<” o

- The tree is then reorganized by ,/’ N

. / — \ —
removing the superflous parent X X

of the removed subtree MMJMLHU

=~ Toprung. - 30



ProtoTree Height

- A model with fewer prototypes is easier to interprete but represent a
less complex model with less predictive power

- Need to select a right value for h, the height of the tree

- The initial value for h such that the number of leaves is at least as
large as the number of classes.

100%

80% et

Accuracy
3
=

— single Tree
~-- Ensemble
----- Min. Height

10 11

9
Height of ProtoTree
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Reasoning

- Visualization of a subtree of a ProtoTree

- For each node: the prototype and the image from which the prototype
is extracted
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Results

Higher accuracy then ProtoPNet Data Method Inter-  Top-1 #Proto
set pret. Accuracy  types
ProtoTree is almost 90% smaller Triplet Model [34] 87.5 na.
. ~ TranSlider [58] 85.8 .a.
(1 prototype per class against 10 3 TASN [57] S e
of ProtoPNet) and easier to X ProtoPNet [9] + 792 2000
. § ProtoTree h=9 (ours)  ++ 82.240.7 202
Interpret S ProwPNetens. 3)[9]  + 848 6000
=) ProtoTree ens. (3) + 86.6 605
O ProtoTreeens. (5)  + 87.2 1008

ProtoTree reveals biases learned
by the model, where some

prototypes focus on the Present

background. |

Black Tem Gray Caibird
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Shortcomings



Looks like that, does it?

- For a human-interpretable model this statement must hold:

Two image patches look similar to a ProtoPNet <= Two image
patches look similar to a human

- Semantic gap between image space and latent space
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Looks like that, Does it? [2]

Corresponding  Similarity
Activation Map  Score

Original Image

Training Image
from which

Head on Stomach experiment PoeEsuen ot
One of the most activated . 8.48
prototype p; is taken into
consideration

- The image is perturbed (with oronsnege  sevny Sl

very small noise) such that the Tainig mege

. . from which 3.33
network finds p; in a different .

Prototype is taken
location with high similarity in a 1. P e e

non-sensical place . »
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Looks like that, Does it? [2]

JPEG compression experiment

- Training images of half of the
classes are compressed

- The similarity score of the
compressed version of an image
(X) from a compressed class that
is classified correctly by
ProtoPNet is recorded

- This score is then compared with
the one obtained by passing the
original image (x) to ProtoPNet

If the scores are very different, it
means ProtoPNet doesn't
consider x and X similar as
humans would

Activation Map of ~ Similarity
Compressed Image  Score

Compressed Image
-

Training Image

from which 5.18
Prototype i taken
] b
Activation Map of
Original Image Original Image
1.68
Activation Map of - Similarty
Compressed Image  Compressed Image ~ Score
Training Image
from which 5.44
Prototype s taken
Activation Map of
Original Image
0.64
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Looks like that, Because... [4]

Prototypes alone are not enough, they need to be explained

- Visual textual information is added to each prototype regarding visual
features:

hue, contrast, saturation, shape, texture

Useful to understand misleading prototypes and redundancy

Prototype-based Image Classification Our Explanation Prototype-based Image Classification Our Explanation

Prototypical e Prototypical
Training ”a"h Training | patch
image °°'"""’ Explanation [mage contains {8 Explanation
LOCAL IMPORTANCE Catbird LOCAL IMPORTANCE
because | Hue 2.2473 Texture 0.2898
Shape 10077 Contrast .23
looks like Texture 0.7546 Shape 0.1844
Test saturation  0.5921 Hue 0.0781
‘mage Contrast  0.0639 Saturation  -0.0368
contains.
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Looks like that, Because... [4]

- A set of modified images is created for each visual feature

- Local score for test image R, prototype j and transformation i:

¢local 9jk— g’l k

- Global score for a prototype j and transformation i (obtained from the
training dataset)

[Strain| ’/ k
Z (ocal “Gjk

Z [Strain |

1))
¢global
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Recent improvement



Improvement of Interpretability with SA and SDFA [3]

- Need of a benchmark to quantitatively evaluate the interpretability of
prototypes

- Evalutation metrics based on two problems:

- inconsistency: a prototype may mistakenly correspond to different object
parts in different images

- instability: a prototype may mistakenly correspond to different object
parts in the original image and the slightly perturbed image

Prototype Prototype

Image 1 Image 2 Image Perturbed Image
(a) Inconsistency (b) Instability
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Improvement of Interpretability with SA and SDFA [3]

- The dataset needs to have object parts annotations

- Consistency score:

- Consider a prototype of class k and all the test images of that class

- For each image, compute a binary vector: 1if an object part is inside the
prototype activation region, 0 otherwise

- Take the average of all these binary vectors

- If the maximum element is higher than a threshold the prototype is
consistent

- Take the ratio between the number of consistent prototypes and the total
number of prototypes as the consistency score

Max
0.9>p

Consistent
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Improvement of Interpretability with SA and SDFA [3]

- Stability score:

- Consider a prototype of class k and all the test images of that class

- For each image, compute the binary vector for the original version and the
perturbeted one

- If these binary vector are equals, the prototype is stable

- Take the ratio between the number of stable prototypes and the total
number of prototypes as the stability score

Not Equal—Non-Stable
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Improvement of Interpretability with SA and SDFA [3]

- Shallow Deep Features Alignement (SDFA) module: incorporated
spatial information from shallow layers is in the deep feature maps

- Similarity structure t € R™*"W of a feature map z € R™® can be used
to compare two representations

- Aloss term is added during the training to enforce these spatial
structures to be similar

SDFA Module Spatial Information Prototype Layer (Category A) SA module

Prototypes ‘Activations

0| il Lo
% SO R > logit,

Lee

st

e g e L logity
[Max i

Input Image @

Prototypes. Activations
Backbone Prototype Layer (Category B)
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Improvement of Interpretability with SA and SDFA [3]

- Score Aggregation (SA) module: the activation values of prototypes are
allocated into their categories

- Because of the last fully connected layer of ProtoPNet, the
classification score depends also on the prototypes of other classes

- The similarity scores of the prototypes are aggregated into their classes

- Alearnable layer adjust the importance of each prototypes for each
class prototypes.

SDFA Module Spatial Information Prototype Layer (Category A) SA module
types ‘Activations

ash

¢ i ox s
@ e @ +@. logity

y a0

I

. CRHAWAD, Prototypes Activations
s Backbone Prototype Layer (Category B)

Input Image @
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Conclusions

- Start using interpretable models for high stake decisions instead of
black boxes!

- Prototypical learning gives a form of interpretability, this part looks
like that!

- There still are some shortcomings

- Recent improvement of ProtoPNet and first attempt to create a
benchmark for interpretability
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Thank you!
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