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Disclaimer

What this is

!(NIH)



A tall order



About UQ. . .

Intro to conformal prediction

� X 7! Ŷ = f(X) not enough for decision making . Need CIs / . . .

� Bootstrap methods. Cost! Asymptotics & assumptions

� Asymptotic estimates (e.g. CLT+BE). But real life has fat tails . . .

� So. . . go Bayesian or go home?

� costly, approximations are usually unjustified

� priors are basically arbitrary, so why trust the posterior?

) Need proper �confidence sets� with guarantees based on data and not on assumptions



The goal of conformal prediction

Intro to conformal prediction

Given: supervised trained model f , and (unseen) calibration dataset Dcal i.i.d.

Attach �UQ / calibration layer� to f which outputs �good� prediction sets

� Regression:
intervals covering true values

� Classification:
discrete sets containing the true class

with high probability

f(x)

C(x)

Conformalization

For new (X;Y ) compute set C(X) s.t.

P(Y 2C(X))� 1¡� (coverage)



What we get

Intro to conformal prediction

Conformal predictor: C:X ! 2Y with guaranteed coverage

� Distribution-free

� Model-agnostic: works with RFs, GBTs, NNs and any black-box

� Efficiency: jC(X)j� jY j (no trivial solution)

� Adaptivity: jC(X)j depends on the model's uncertainty

� Dcal unseen by f , hence �split CP�. Same distribution as Dtrain



What we get

Intro to conformal prediction

Conformal predictor: C:X ! 2Y with guaranteed coverage

� C= C(f ;Dcal; �)

� Distribution-free

� Model-agnostic: works with RFs, GBTs, NNs and any black-box

� Efficiency: jC(X)j� jY j (no trivial solution)

� Adaptivity: jC(X)j depends on the model's uncertainty

� Dcal unseen by f , hence �split CP�. Same distribution as Dtrain



What this means

Intro to conformal prediction

� Interpretable? X
� Context for the outputs. Alternatives matter in high-stakes decisions!

fdefective ball-bearing;unbalanced wheelg=/ fdefective ball-bearing;axle failureg

� Useful for automated decisions? X
� Rigorous, calibrated uncertainty estimates

� OOD detection

� . . .

� Criterion to select between algorithms (�best� prediction sets)

� And more!



An algorithm for
classification



A first idea

CP for classification

f :X! [0;1]K classifier. Desired cover. 90%

New x0. Sort confidences: c(1)
0 ; : : : ; c(K)

0

(c(j) is the j-th order statistic of c)

Include classes C(x0) :=ff(1);:::; f(m)gwhileP
j=1
m

c(j)
0 < 0.9

Poorly calibrated (NNs overconfident...)

For every (xi; yi)2Dcal calibration set:

Sum confidences into si :=
P

j=1
mi c(j)

i

taking classes until true yi, in position mi

min q̂ 2 [0; 1] s.t. P̂(S6 q̂)> 0.9

C(x0) := ff(x0)(1); : : : ; f(x0)(m)g where
m is s.t.

P
j=1
m c(j)

0 < q̂

Calibrated on unseen data!



Adaptive predictive sets for classification

CP for classification

For each (xi; yi)2Dcal compute a conformity score: si= s(xi; yi) :=
P

j=1
m(yi) f(xi)(j),

s is the model's up-to-true-label total confidence

Look at q̂:9, the 90th percentile of s q:9 :=FS
¡1(:9) :=min

q
fP(S6 q)> :9g

For �90% of Dcal's samples f has up-to-true-label confidence below q̂:9

Define C(x0) :=
�
y1; : : : ; ym0:

P
j=1
m0 f(x0)(j)6 q̂:9

	
Adding classes until the total confidence reaches q̂:9 results in �90% of the sets C(xi)
including the true class

Profit! P(Y 02C(X 0))� :9





A simpler algorithm

CP for classification

1. For each (xi; yi)2Dcal compute a conformity score: si= s(xi; yi) := 1¡ f(xi)yi,

S is the model's �uncertainty� for the correct class

Look at the 90th percentile q̂= q̂:9

P(S6 q̂:9)> :9 means that:

f has confidence >1 ¡ q̂ for
90% of Dcal's labels

2. In other words:

�90% of Dcal's labels have true-class uncertainty below q̂:9
(n)

3. Define C(x0) :=
�
y 2Y: s(x0; y)6 q̂:9

(n)	=�
y: f(x0)y> 1¡ q̂:9

(n)	
4. Profit!





The general recipe

Vovk's algorithm

What we did:

1. Take a heuristic notion of uncertainty associated to f

Ex: softmax outputs

2. Define a conformal score s(x; y)2R for all (x; y) and compute over Dcal

Higher is worse

3. Compute a high conformal quantile q̂= q̂1¡�

(1¡�) fraction of samples in Dcal have score 6q̂

4. Define C(x0) := fy: s(x0; y)6 q̂g

5. Then P(Y 02C(X 0))� 1¡�
(theorem)



. . .



The fundamental theorem

Vovk's algorithm

Theorem. ([VGS05])

Let f(Xi; Yi)gi=1n+1 be exchangeable. Define q̂ := q̂1¡�
(n) := F̂s;n

¡1
�
d(n+1) (1¡�)e

n

�
: Then

C= Cq̂:X ! 2Y constructed as

C(X) := fy 2Y: s(X; y)6 q̂g

fulfills

1¡�6P(Yn+12C(Xn+1))6 1¡�+
1

n+1
;

for f ; �; n arbitrary.

Key property: Exchangeability implies that Sn+1 is indistinguishable from the other Si. It
has equal probability of falling between any two conformal scores.

P(Sn+16Sk)=
k

n+1
:



But. . . how good can this be?

Vovk's algorithm

It's not magic . . .

� Constant scores? Useless sets

� Random scores? Useless sets

� Ranking of scores does not reflect model error? Useless sets

� Informative scores?X
� Adapted loss functions?X
� Heavy tails?X Predictive sets will be larger



Beyond the
discrete



Can we do the same for regression?

CP for regression

1. Y = f(X)+ "2R regression model. Uncertainty heuristic: residuals jY ¡ f̂(X)j

2. Compute conformal scores s(xi; yi) := jyi¡ f(xi)j over Dcal

3. Form q̂1¡�=min
n
q: jfi: si6 qgj

n
> 1¡�

o
4. Define C(x0) := fy 2R: s(x0; y)6 q̂1¡�g= [f̂(x0)¡ q̂1¡�; f̂(x0)+ q̂1¡�]

5. Profit?

Constant size for prediction interval

Why do we learn the mean E[Y jX], when we care about quantiles?



An idea

CP for regression

� Recall: CDF of Y jX is P(Y 6 y jX)
�-th conditional quantile function t�(X) := inf fy 2R:P(Y 6 y jX)>�g

� The conditional prediction interval

C(X)= [t�/2(X); t1¡�/2(X)]

trivially satisfies

P(Y 2C(X)jX)=1¡�

� Alas . . . we don't have access to the CDF of Y jX
So we can learn the quantiles instead and conformalize (finite sample guarantees)



Conformalized Quantile Regression

CP for regression

� Use pinball loss �� to learn quantiles ( t̂�/2; t̂1¡�/2)

��(y; ŷ)=
�

� (y¡ ŷ) if y > ŷ
(1¡�) (ŷ¡ y) otherwise

� Use signed distance to the closest quantile as score

s(x; y) :=max f t̂�/2(x)¡ y; y¡ t̂1¡�/2(x)g

� Compute q̂= q̂1¡�

� Same prediction rule:

C(x0) = fy 2R: s(x0; y)6 q̂g
= [ t̂�/2(x0)¡ q̂ ; t̂1¡�/2(x0)+ q̂]
� [ t̂�/2(x0); t̂1¡�/2(x0)]

[RPC19]



Conformalized Quantile Regression

CP for regression

� Use pinball loss �� to learn quantiles ( t̂�/2; t̂1¡�/2)

��(y; ŷ)=
�

� (y¡ ŷ) if y > ŷ
(1¡�) (ŷ¡ y) otherwise

� Use signed distance to the closest quantile as score

s(x; y) :=max f t̂�/2(x)¡ y; y¡ t̂1¡�/2(x)g

� Compute q̂= q̂1¡�

� Same prediction rule:

C(x0) = fy 2R: s(x0; y)6 q̂g
= [ t̂�/2(x0)¡ q̂ ; t̂1¡�/2(x0)+ q̂]
� [ t̂�/2(x0); t̂1¡�/2(x0)]

[RPC19]

(a) Split: Avg. coverage91.4%; Avg. length2.91.

(c) CQR: Avg. coverage91.06%; Avg. length1.99.



Potential
stumbling blocks



Difficulty #1: Marginal vs conditional

Stumbling blocks

P(Y 2C(X))� 1¡� is a marginal guarantee

� One usually wants a stronger conditional guarantee P(Y 2C(X)jD)

� Not conditional on Dcal;Dtrain

	 Fluctuations wrt. 1¡�
	 Need n large enough (see later, and [Vov12])

� Not conditional on groups

	 Coverage unbalanced in X or Y (only �easy� samples) C =E[1fY 2C(X)g]

	 Check coverage separately over a partition of X or Y Ĉ = ÊDval[1fYi2C(Xi)g]
	 Changes to the score, many techniques.



Conditional coverage

Stumbling blocks
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no coverage

5% coverage

Group 1 Group 1 Group 1Group 2 Group 2 Group 2

marginal conditional

14% coverage 100% coverage 80% coverage 90% coverage 90% coverage

correctly covered example
incorrectly covered example

[AB22]



Measuring coverage

Stumbling blocks

C =E[1fY 2C(X)g]

1. Cross-validation over Dcal;Dval of empirical coverage

Ĉ = 1
jDvalj

X
x;y2Dval

1fy 2CDcal(x)g

Mean should concentrate around 1¡�
Bad Ĉ is a good indicator of distribution shift (more later)

2. Distribution of Ĉ is known [AB22, App. C]

Good checks available, formulas to look for errors. Use moments to verify implementation

3. Verify conditional coverage with feature-stratified or size-stratified coverage



Conditional guarantees

Stumbling blocks

� Feature-balanced CP [Vov12, AB22]

1. Want: P(Y 02C(X 0)jX1
0= g)� 1¡� for all g 2f1; : : : ; Gg= range(X1)

2. Stratify by group: si
(g)
; q̂(g)

3. C(x) := fy: s(x; y)6 q̂(x1)g X
� Class-conditional CP [Vov12, AB22]

1. Want: P(Y 02C(X 0)jY = y)� 1¡� for all y 2Y

2. Stratify by class: si
(k); q̂(k)

3. C(x) := fy: s(x; y)6 q̂(y)g X



Difficulty #2: distribution shift

Stumbling blocks

Distribution shift, f(Xi; Yi)gi=1n+1 non exchangeable

Time series, streaming data, finite data, interactive systems, . . .

Adaptive CP [GC21]: Compute �n+1; �n+2; : : : ; with

�
increase �t if Yt2C(Xt)
decrease �t if Yt2/ C(Xt)

�t+1 :=�t+ 
 (�¡ errt); where errt :=1Ct(Yt)

And reestimate q̂1¡�. Also see [GC22, BCRT22]



Difficulty #2: distribution shift

Stumbling blocks

Distribution shift, f(Xi; Yi)gi=1n+1 non exchangeable

Time series, streaming data . . . nexCP [BCRT22]

� Fixed, non-negative weights
P
wi=1 for conformal scores (decay)

� Computes q̂1¡�
(n;wi) wrt. weighted empirical distribution F̂s;w

(n)= 1

n+1

P
wi �si

� C(xn+1) :=
�
y: s(xn+1;y)6 q̂1¡�

(n;wi)
	



More difficulties

Stumbling blocks

� In some domains, coverage is not the right notion!

	 Conformal Risk Control [ABF+22]

� Data waste

	 Full conformal prediction

	 jackknife+



How good is my CP?

Stumbling blocks

� Adaptivity: not guaranteed but essential. Smallest average jC(X)j not enough

� Histogram of jC(xi)j informative but not conclusive

� Coverage checks: formulae to look for errors [AB22, �3]

� Analytic expression for sample coverage

� Use moments to verify implementation

� Bad coverage is a good indicator of distribution shift

� Dependence on the calibration set:

P(Y 02C(X 0)jDcal)�Beta(n+1¡m;m); m := b(n+1)�c

Invert the CDF to compute n for �; ". See [Vov12] for this and more



Extensions



A long list

Extensions

� Group-balanced CP: ensure per-group coverage

� Class-conditional CP: ensure per-class coverage

� Conformal risk control: minimise false negative rate, maximise �fairness�,.. . [ABF+22]

� Outlier detection: p-values instead of the 3� hack [BAL+21]

� CP under distribution shift: real data, streaming data, . . . [BCRT22, GC22, GC21]

� CP without exchangeability.

� Joint optimization: �smooth sorting�, increases CW-efficiency [SDCD22]



Recap



The core idea

Recap

1. Take a heuristic notion of uncertainty associated to f

2. Define a conformal score s(x; y)2R and compute over Dcal

3. Compute a high conformal quantile q̂= q̂1¡�
(n)

4. Define C(x0) := fy: s(x0; y)6 q̂g.

5. Then: P(Y 02C(X 0))� 1¡�.
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Methods for classification and regression. Trivial to implement. Ready-to-use examples

Simple techniques to verify implementation

Adaptive and heuristic methods for time series

Applications to OOD and multi-task

Can optimize arbitrary risks



The core issues

Recap

1. Lack of conditional guarantees

2. Efficiency (class-wise and group-wise)

3. Distribution shift

4. . . .



Happy conformalizing!

miguel@appliedai.de

Sources 

appliedAI Institute gGmbh



A learning path

Sources

1. Videos: excellent tutorials by Angelopolous & Bates (YouTube)

2. A&B's easy and comprehensive introduction [AB22]

(Many of the references in this talk are introduced here)

3. NeurIPS 2022 talk by Candès on distribution shift, nexCP and related papers

4. Awesome Conformal Prediction on github for ALL the pointers (too many)

5. Some of Vovk's work, e.g. conditional guarantees (and lack thereof) [Vov12]

6. Look for papers by Angelopoulos, Bates, Candès, Jordan, Lei, Tibshirani, Wasserman,. . .

7. ?
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