
Sampling Free Epistemic Uncertainty Through 
Approximated Variance Propagation



Aleatoric and 
epistemic 
uncertainty

• Aleatoric: Uncertainty that is intrinsic to the data generating process.

• Joint data distribution: P(𝑋, 𝑌)

• Uncertainty about  𝑌 given 𝑋: P(𝑌 ∣ 𝑋)

• Cannot be reduced by observing more data.

• Epistemic: Uncertainty about data generation process.

• E.g. the uncertainty about the parameters 𝜃 of a model of the 
conditional distribution

𝑝𝜃( ො𝑦 ∣ 𝑥)

• Can be reduced by observation.

• Bayesian posterior estimate given data 𝐷:

𝑝 ො𝑦 𝑥, 𝐷 = න𝑝𝜃 ො𝑦 𝑥 𝑝(𝜃 ∣ 𝐷)



Epistemic uncertainty through noise injection

Add intermediate noise layers. Keep them active during training and inference.

During training, the model learns to compensate for the noise and hence reduces 
the variance in the prediction.

During inference, noise injection can be used for epistemic uncertainty 
estimation as the model is likely to have learned to compensate for the injected 
noise only within the data distribution. 



Additive and 
multiplicative 
noise layer

• There are two common ways to inject noise to the 
input vector 𝑋 ∈ ℝ𝑛 .

• Additive: 𝑋 + 𝑍 for random vector 𝑍 ∈ ℝ𝑛

• Multiplicative: 𝑋 ∘ 𝑍 for random vector 𝑍 ∈ ℝ𝑛

• Where ∘ is the element wise multiplication 
(Hadamard product)



Dropout

• Special case of multiplicative noise. 

• 𝑧 is a binary noise vector where each 𝑧𝑖 is drawn 
independently from a Bernoulli distribution.

• Layers with dropout: 𝜎(𝑀(𝑧 ∘ 𝑥) + 𝑏)

• Connects noise injection with approximate 
Bayesian posterior inference.



Computational complexity

MC sampling scales linearly in 
the number of samples

Can constitute a severe 
bottleneck for realtime 
applications

However, reliable uncertainty 
estimates are necessary for 
critical applications such as 
autonomous cars.

Are there faster methods for 
estimating the uncertainty 
that is implicitly captured by 
noise injection?



Propagation of 
uncertainty

• How does one propagate 
uncertainties from already 
estimated quantities to derived 
quantities?

• Model estimate as random 
variable 𝑋.

• Uncertainty is modeled as 
covariance Σ𝑋 .



Algebra of random variables

• R.v. 𝑋 ∈ ℝ𝑑 and affine map 𝑓: 𝑥 ↦ 𝑀𝑥 + 𝑏: 

Σ𝑀𝑋+𝑏 = 𝑀𝑇Σ𝑋𝑀

• Independent r.v. 𝑋, 𝑍 ∈ ℝ𝑑 and ∘ Hadamard product:

Σ𝑋∘𝑍 = Σ𝑋 ∘ Σ𝑍 + 𝐸 𝑍 𝐸 𝑍 𝑇 ∘ Σ𝑋 + 𝐸 𝑋 𝐸 𝑋 𝑇 ∘ Σ𝑍



Non-linear transformations 
Naive approach

• 1st order approximation:

• For non-linear 𝜎 let 𝐽𝜎(𝑥) be the 
Jacobian of 𝜎.

Σ𝜎(𝑋) ≈ J𝜎 E X 𝑇Σ𝑋 𝐽𝜎 (𝐸[𝑋])

• But crude approximation



Expressive 
power of 
covariance 
matrices

Covariance matrix MC samples

Standart deviations ☑️ ☑️

Quantiles ❌ ☑️

Higher-order 
moments

❌ ☑️



Method 
comparison

• Uncetainty propagation achievies comparable results in terms 
of RMSE and test likelyhood (Gaussian likelihood model).

• Runtime of MC sampling techniques scales linearly with 
number samples.

• Uncertainty propagation has constant runtime.

Comparrison of uncertainty propagation (OUR) against the original MC dropout method on various regression datasets. 



Approximations in high-dimensional 
space



Convolutional layers

• Full covariance propagation is expensive in high dimensions, e.g. images

• Multiplication of matrices of dimension
ℎ𝑒𝑖𝑔ℎ𝑡 ⋅ 𝑤𝑖𝑑𝑡ℎ ⋅ 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 × ℎ𝑒𝑖𝑔ℎ𝑡 ⋅ 𝑤𝑖𝑑𝑡ℎ ⋅ 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠

• Convolutional layers are typically used in CV as first layers in high dimensions

• Such layers introduce relatively little covariance:

• Kernel dimension << input dimension

• E.g. for independent input: If two components in the output space are correlated 
then their corresponding kernel windows overlap.

• Only propagate variance: 
• 𝑉𝑎𝑟 𝑓(𝑋) = 𝑚𝑎𝑖𝑛_𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙(Σ𝑓 𝑋 )

• Significantly reduces computational cost.



Dropout and Gaussian 
input approximation

• Consider the input to the activation function of a neuron 
trained with dropout

σ𝑖 𝑤𝑖 𝑧𝑖 𝑥𝑖

• 𝑥𝑖 activations of the previous layer or input

• 𝑤𝑖 input weights

• 𝑧𝑖 independent samples of Bernoulli distribution of 
success probability 𝑝𝑖 (dropout).

• Usually, the 𝑤𝑖 are centered around 0 and 𝑥𝑖 are 
unimodally distributed or come from a bounded interval.

• Under such conditions the central limit theorem predicts 
that the input distribution will be approximately 
Gaussian if the input dimension is high. 

Dropout induces an approximately Gaussian distribution that is pushed 
through the non-linearity.



Mean and variance of 
neuron input 
distribution under 
dropout

• Neuron input: σ𝑖 𝑤𝑖 𝑍𝑖𝑋𝑖 assuming all 𝑋𝑖 , 𝑍𝑖 are 
independent

• Mean: 

෍
𝑖

𝑤𝑖 𝑝𝑖 𝐸 𝑋𝑖

• Variance: 

σ𝑖 𝑤𝑖
2𝑝𝑖(𝑉𝑎𝑟 𝑋𝑖 + 1 − 𝑝𝑖 𝐸 𝑋𝑖

2 )

• Where 𝑝𝑖 = 𝑃(𝑧𝑖 = 1)

Emipirical imput distribution of a hidden unit under dropout. Before (left), 
and after (right) training.



Variance propagation under Gaussian input 
distributions for ReLU

• The output variance of the ReLU function under a Gaussian input distribution can be computed 
analytically.

• Since only variances are propagated, one only needs to consider the one dimensional case. 

𝑉𝑎𝑟𝑋∼𝒩 𝜇,𝜎 max 0, 𝑋 = 𝐸𝑋∼𝒩(𝜇,𝜎) max 0, 𝑋 2 − 𝐸𝑋∼𝒩 𝜇,𝜎 max 0, 𝑋
2

𝐸𝑋∼𝒩(𝜇,𝜎) max 0, 𝑋 = ׬
0

∞
𝑥 𝒩 𝑥; 𝜇, 𝜎 𝑑𝑥

𝐸𝑋∼𝒩(𝜇,𝜎) max 0, 𝑋 2 = ׬
0

∞
𝑥2 𝒩 𝑥; 𝜇, 𝜎 𝑑𝑥



Qualitative 
comparison 
on a 
semantic 
segmentation 
task

Ground truth

MC prediction

VP prediction

MC uncertainty

VP uncertainty

Input image



Qualitative 
comparison 
on a depth 
regression 
task

Input image

MC prediction

VP prediction

MC uncerta inty

VP uncertainty


