1 INITIATIVE FOR
QCI APPLIED ARTIFICIAL
INTELLIGENCE

Sampling Free Epistemic Uncertainty Through
Approximated Variance Propagation

appliedAl
Shaping Europe’s Innovative Power in Al

= MR | W 1o



Aleatoric and
epistemic
uncertainty

* Aleatoric: Uncertainty that is intrinsic to the data generating process.
» Joint data distribution: P(X,Y)
* Uncertainty about Y givenX: P(Y | X)
* Cannot be reduced by observing more data.

* Epistemic: Uncertainty about data generation process.

* E.g.the uncertainty about the parameters 6 of a model of the
conditional distribution

Pe(¥1x)
* Canbe reduced by observation.

* Bayesian posterior estimate given data D:
P(?|x,D)=fp9(9l x)p(6 | D)




Epistemic uncertainty through noise injection

@ Add intermediate noise layers. Keep them active during training and inference.

@ During training, the model learns to compensate for the noise and hence reduces
the variance in the prediction.

During inference, noise injection can be used for epistemic uncertainty

@ estimation as the model is likely to have learned to compensate for the injected
noise only within the data distribution.



* There are two common ways to inject noise to the

AC C |tve ad nd input vector X € R™.

. . . * Additive: X + Z for random vector Z € R"

multiplicative o )
* Multiplicative: X o Z for random vector Z € R

NOI|ISE |aye 8 * Where o is the element wise multiplication

(Hadamard product)



Special case of multiplicative noise.

Z is a binary noise vector where each z; is drawn

independently from a Bernoulli distribution.
* Layers with dropout: d(M(z o x) + b)

Dropout

* Connects noise injection with approximate
Bayesian posterior inference.



Computational complexity

v

MC sampling scales linearly in
the number of samples

However, reliable uncertainty
estimates are necessary for
critical applications such as
autonomous cars.

A

Can constitute a severe
bottleneck for realtime
applications

Are there faster methods for
estimating the uncertainty
that is implicitly captured by
noise injection?



Propagation of
uncertainty

* How does one propagate
uncertainties from already
estimated quantities to derived

guantities?

e Model estimate as random
variable X.

* Uncertainty is modeled as
covariance Xy.




Algebra of random variables

* Rv.X € R and affinemap f:x = Mx + b:

Zux+p = M"ExM

* Independent r.v. X,Z € R% and o Hadamard product:

Yvor = 2y o2, + E[Z|E[Z]" o =y + E[X]E[X]! o 2,



Non-linear transformations
Naive approach

e 1storder approximation:

* For non-linear o let J;(x) be the
Jacobian of o.

ZO'(X) ~ JG(E[X])TZX ]a (E[XD

* But crude approximation
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* Uncetainty propagation achievies comparable results in terms

I\/l et h O d of RMSE and test likelyhood (Gaussian likelihood model).
e Runtime of MC sampling techniques scales linearly with
: number samples.
CO m p a rl S O n * Uncertainty propagation has constant runtime.
Test RMSE Test log-likelihood Runtime [s]
Dataset MC[9] OUR MCI[9] OUR MC[9] OUR

Boston Housing 3.06 £0.18 3.134+0.22 | —2.55+0.07 —2.654+0.12 3.47 0.06
Concrete Strength 542+0.10 542+0.11 | -3.11+0.02 -3.13+0.02 3.63 0.06
Energy Efficiency 1.60£0.065 1.594+0.05 | —1.91+£0.03 —-1.9640.03 3.27 0.06

Kin8nm 0.08 =0.00 0.08=+0.00 1.10 £0.01 1.11+0.01 | 475 0.06
Naval Propulsion 0.00 =0.00 0.00=x0.00 4.36 = 0.01 3.64 = 0.02 5.10 0.06
Power Plant 4.04+0.04 4054004 | —2.82+0.01 -—-2.85+0.01 4.46  0.06

Protein Structure 4.42+0.03 4.42+0.03 | —290+0.01 —-2.90+0.00 4.38 0.06
Wine Quality Red 0.63+0.01 063+001 ]| —-095+002 -095+0.01 3.49 0.06
Yacht Hydrodynamics | 2.89 £0.25 3.1440.31 —-2.32+0.10 -2.104+0.07 3.42 0.06

Comparrison of uncertainty propagation (OUR) against the original MC dropout method on various regression datasets.



Approximations in high-dimensional
space




Convolutional layers

Full covariance propagation is expensive in high dimensions, e.g. images

* Multiplication of matrices of dimension
(height - width - channels) X (height - width - channels)

Convolutional layers are typically used in CV as first layers in high dimensions

Such layers introduce relatively little covariance:
* Kernel dimension << input dimension

e E.g. for independent input: If two components in the output space are correlated
then their corresponding kernel windows overlap.

Only propagate variance:
* Var(f(X)) = main_diagonal(Zs(x))
 Significantly reduces computational cost.



Dropout and Gaussian
Input approximation

* Considertheinputto theactivation functionofa neuron
trained with dropout

2 WiZiX;
e x;activations ofthe previouslayerorinput
* w; input weights

* z;independentsamplesofBernoullidistribution of
success probability p; (dropout).

* Usually,the w; are centered around 0 and x; are
unimodally distributed or come from a bounded interval.

* Undersuch conditions the central limittheorem predicts Dropout induces an approximately Gaussian distribution that is pushed
thattheinputdistributionwill be approximately through the non-linearity.
Gaussianiftheinputdimensionis high.



Mean and variance of
neuron input
distribution under
dropout

* Neuron input: )}, w; Z; X; assuming all X;, Z; are
independent

* Mean:
Z E[X ] -0.1 0 0.1 0.2 -20 -15 -10 -5
W;p;EL4;
i Emipirical imput distribution of a hidden unit under dropout. Before (left),
and after (right) training.
* Variance:

Yowip;(Varlx;] + (1 —p)E[X;]?)

* Where p; = P(z; = 1)



Variance propagation under Gaussian input
distributions for RelLU

* The output variance of the RelLU function under a Gaussian input distribution can be computed
analytically.

 Since only variances are propagated, one only needs to consider the one dimensional case.

: : 2
Vary o) _max(O,X)_ = Ex-n(u0) [maX(O, X)zl — Ex-n(wo) [maX(O, X)]

Ex n (o) _max(O,X)_ = fooox N(x;u,0)dx

Ex - (u0) [maX(O,X)Z_ = fooo x? N(x;u, 0)dx



Qualitative
comparison
on a
semantic
segmentation
task




Qualitative
comparison
on a depth
regression
task
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