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Motivation



Why do we want to quantify the uncertainty in our models?

Figures showing the true value (red) and the predictive mean (blue) including ±2σ for a
model evaluated on the Mauna Loa CO2 concentration dataset [4]. The blue shades
indicate half a std. deviation each. 2



Uncertainty Quantification



Uncertainty is devided into aleatoric and epistemic uncrtainty

Aleatoric uncertainty
• Stochastic uncertainty or unknowns,
responsible for different outcomes
of the same experiment

• Often due to insufficient
measurement quality

• Does not preclude the existence of
the “unknowns”

• Uncertainty trapped “in the data”
• Methods: Quantile regression,
mixture of densities, max. likelihood
est.

Epistemic uncertainty
• Systematic uncertainty, due to
possibly available information but
practically not used

• Inaccuracies in measurements,
unused data / features, neglecting
effects

• Captured by the model due to
design decisions, data used, etc.

• Methods: Bayesian Neural Networks,
MC dropout or deep ensembles
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Illustration of aleatoric uncertainty

Based on the current information (years in the job), the increasing variance in ML
experience cannot be explained. 4



Illustration of epistemic uncertainty

While the model returns point estimates, it is uncertain about its predictions, especially
further in the future. 5



Recap of Dropout



Dropping our neurons to prevent overfitting

Illustration of a standard neural network vs. one with dropping out nodes [6].
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Model definition including dropping out nodes

zl+1i = wl+1i · yl + bl+1i

yl+1i = σ(zl+1i )
(1)

ηlj ∼ B(p)

ỹl = ηl · yl

zl+1i = wl+1i · ỹl + bl+1i

yl+1i = σ(zl+1i )

(2)

Where the keep probability is p and layers are denoted by l ∈ {0, . . . , L− 1} [6].
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Dropout is primarly used to prevent overfitting

• Reduce risk of overfitting
• Model ensemble without optimizing
hundreds of models

• Activate all parts of the model

Dropout improves performance on the test
data for different architectures and
configurations [6].
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Dropout is switched offduring inference — all nodes are active

As dropping nodes is turned off during inference, the weights need to be scaled to not get
larger than expected [6].
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Monte Carlo Dropout



Q: How do we get the model’s uncertainty?

Figures showing the true value (red) and the predictive mean (blue) including ±2σ for a
model evaluated on the Mauna Loa CO2 concentration dataset [4]. The blue shades
indicate half a std. deviation each. 10



Retrieving the predictive mean and variance

Given a modelM which was trained with dropout and a keep probability of p.
Generate {(ŷi, x)}Ni=1 by keeping dropout on.

Estimators for E(y), Var(y) read

E(y) ≈ 1
N

N∑
i=1

ŷi(x)

Var(y) ≈ τ−1I+ 1
N

N∑
i=1

ŷi(x)ŷi(x)T − E(y)E(y)T
(3)

Where τ = l2p
2Nλ the GP precision; τ,p obtained via hyperparameter search [5].
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Implementation MC Dropout

Algorithm 1: Implementation of Monte Carlo Dropout by using dropout during
inference as well and computing statistics of the samples from the predictive
distribution.
1: M←M.train()
2: ŷi ←M(x) ∀i ∈ [1, . . . ,N]
3:
4: Ê(y)← ŷ.mean()
5: σ̂(y)← ŷ.std()
6:
7: return Ê(y), σ̂(y)
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Why does it work?

LIGHTBULB “Averaging over forward passes is equivalent to Monte Carlo integration over a
Gaussian Process posterior approximation.”

ARROW-RIGHT We’ll familiarize with the idea but I refer to [3, 4] for a detailed discussion.

Target: predictive distribution for a new observation x∗

p(y∗|x∗, X, Y) =
∫
p(y∗|x∗, ω)p(ω|X, Y)dω

≈
∫
p(y∗|x∗, ω)qθ∗(ω)dω, θ∗ = argmin

θ
KL(qθ(ω)|p(ω|X, Y))

(4)
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Finding qθ∗ ⇒ Minimizing the KL-Divergence

LIGHTBULB Minimizing KL-Div.⇔ maximizing log evidence lower bound [1].

log p(Y|X) = log

∫
p(Y|X, ω)p(ω)dω

= log

∫
p(Y|X, ω)p(ω)qθ(ω)

qθ(ω)
dω

= log

(
Eqθ

p(Y|X, ω)p(ω)
qθ(ω)

)
Jensen’s ineq.
≥ Eqθ log

(
p(Y|X, ω)p(ω)

qθ(ω)

)
LVI =

∫
qθ(ω) log(p(Y|X, ω))dω − KL(qθ|p(ω))

(5)
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Maximizing the log evidence lower bound

Using MC integration to approximate the integral with one sample ω ∼ qθ and
optimizing w.r.t. θ:

L̂(θ) = log p(Y|X, ω̂)− KL(qθ|p(ω)) (6)
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Connecting the VI approach with dropout

⇒ qθ(ω) is a distribution over weights of a network. Thus, define qθ(ω) s.t. weights
can be turned off.

qθ∗ =
∏
i

qMi(Wi), i ∈ [1, . . . , L]

qMi(Wi) = Midiag(zi.j)
zi,j ∼ B(pi)
Wi ∼ qMi(Wi)

(7)
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Drwabacks of Monte Carlo Dropout

• Requires large number of samples making inference slow (> 103 in [4])
• Inference time is crucial in a lot of applications
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Single-shot Monte Carlo Dropout

• “Succession” of the original Monte Carlo Dropout
• Preserves advantages of Bayesian NN without being slower than
non-Bayesian NN [2]

• Idea: approximate the expected value and variance of the MC Dropout per
layer
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Approximation via Moment Propagation

Illustration of Moment Propagation through dropout, fully-connected and ReLU layers [2].
The expectation and variance flow through the network during a single forward pass
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Approximation via Moment Propagation ctd.

Dropout Layer per layer with nodes i

Ei = Eiin · p

V i X⊥⊥Y= V iin · p(1− p) + V iinp
2 + (Eiin)

2 · p(1− p)
(8)

Dense Layer

Ei =
Nin∑
j

wjiE
j
in + bi

V i =
Nin∑
j

w2jiV
j
in

(9)
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Comparison of Single Shot MC and MC Dropout

Visual comparison of the two methods using MC Dropout. The models were trained on
data in the range of [−3, 19]. In the upper figure, the predictions are shown. In the lower
panel, the uncertainty is included, showing similar results [2].
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Comparison of Single Shot MC and MC Dropout ctd.

Benchmarking both approaches on the UCI benchmarking datasets where N = 104

forward passes were used for the MC Dropout model. Both methods show similar results
on the test data while the approach of Moment Propagation has a significant advantage
w.r.t. inference time [2].
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