
Natural, Trust Region and Proximal Policy
Optimization

MICHAEL PANCHENKO, appliedAI

August 10th, 2021

We present an overview of the theory behind three popular and related algo-
rithms for gradient based policy optimization: natural policy gradient descent,
trust region policy optimization (TRPO) and proximal policy optimization (PPO).
Aster reviewing some useful and well-established concepts from mathematical
optimization theory, the algorithms can be introduced in a very unifying manner.

Contents
1 Trust region methods . . . . . . . . 1
2 Update rules of trust region methods
. . . . . . . . . . . . . . . . . . . . . . . . 3
3 Notation and the RL objective . . . . 5

3.1 Approximating the objective . . . 5
4 Natural gradients, TRPO and PPO . 6

4.1 Natural Gradient and TRPO . . . . 7
4.2 Proximal Policy Optimization . . . 8

5 TRPO from monotonous improvement
. . . . . . . . . . . . . . . . . . . . . . . 10
6 Conclusion . . . . . . . . . . . . . 11
Bibliography . . . . . . . . . . . . . . 11

Mathematical optimization (convex and non-convex) is a large and
mature field of research, as is policy optimization in reinforcement
learning. A fusion of ideas from the two fields gives rise to improve-
ments upon naive gradient descent as used in policy gradient algo-
rithms like REINFORCE. The improvements considered in the present
text boil down to optimizing a regularized or constrained objective
function rather than just the discounted expected sum of rewards.
While trust-region policy optimization (TRPO) essentially uses natural
gradients and restricts the step size to enforce proximity constraints
on policy updates, the significantly simpler proximal policy optimiza-
tion (PPO) introduces constraints that modify the original objective in
a more RL-specific fashion. The actual practical algorithms are moti-
vated by rigorous analysis but involve several approximations and
simplifications. Experimental results of TRPO and PPO display much
more stability and reliability than their non-regularized counterparts
and thereby show that many desired properties are not lost in the
approximations. PPO is a state-of-the-art algorithm which is imple-
mented in most major RL frameworks, like RLLIB, STABLE-BASELINES
and others.

1 Trust region methods

Before we dive into the main results of the papers, let us briefly describe
trust region methods and other general methods for numerical opti- 1 For a self-contained introduction, we recom-

mend [NW06].
mization.1 As we will see, several main results and improvements
in the TRPO and PPO papers are very natural and follow standard
approaches from the point of view of optimization.
In this section we will be concerned with minimizing a twice dif-

ferentiable function f : ℝN →ℝ. First notice that several optimization
algorithms can be understood as the successive application of the fol-
lowing steps:



Algorithm 1
Approximation Based Optimization
Select some x0 as starting point. At each iteration k:

1. Find a local approximation to f close to the current point xk
that can beminimized (over the entire domain of definitionDx)
with less effort than f itself. Such approximations are osten
calledmodels, andwewill denote them bymk. Find aminimum

2 Note how here we allow for mk without
unique minima, as is the case in appli-

cations in RL. However, in many applica-
tions mk will be convex and argminmk

will be a single point. For gradient based
optimization methods this distinction is

usually of little practical importance - one
uses the point where gradient descent has

converged.

of the model.2

xmin≈x ∗∈argminx∈Dx (mk(x)).

2. Set xk+1←xmin and repeat.

For example, the following quadratic approximation to f :

mk
grad(x) := f (xk)+ (x −xk)⊤ ⋅ ∇f (xk)

+ 1
2tk

‖x −xk‖2

yields the update rule of gradient descent with step size tk:

xk+1=xk− tk∇f (xk).

For small enough tk and f with Lipshitz continuous gradients, the
above model actually forms a majorant of f (many proofs of con-
vergence of gradient descent are based on this). However, the above
approximation is clearly very crude and does not take into account the
curvature of f . Constructing the model with the second order expan-
sion of f results in Newton's Method. With the model

mk
Nwt(x) := f (xk)+ (x −xk)⊤ ⋅∇f (xk)

+ 1
2(x −xk)

⊤Hk (x −xk), (1)

where Hk is the Hessian of f at xk, we obtain the update rule:

xk+1=xk−Hk
−1∇f (xk).

The strategy outlined above clearly has a flaw: the models will almost
always be poor approximations to f far from xk - something that
we have not taken into account. This situation can be improved by
restricting the parameter region where we trust our model prior to
optimization - hence the name trust region.
Usually, we cannot judge a priori whether the model is sufficiently

good within the selected region (if it is not, then the region was too
large) or whether on the contrary the region can be extended to allow
for larger step sizes. A posteriori, however, we can compare the actual
improvement in the objective, Δf to the improvement in the model
Δm (the predicted improvement) . If the ratio Δf /Δm is too small, we
should reject the step and shrink the trust region. If the ratio is too
large, we should increase it. To summarize, the improved algorithm
works as follows [CGT00]:

2 Michael Panchenko



Algorithm 2
Trust Region Optimization

Select some x0 as starting point. At each iteration k:

1. Choose an approximation of f around xk, call it mk: ℝN →ℝ.

2. Choose a trust region Uk that contains xk. Usually

Uk := {x: ‖x −xk‖k�Δk },

for some norm ‖⋅‖k and radius Δk >0.

3. Find an approximation of a minimum of mk within the trust
region

xmin≈x ∗∈argminx∈Ukmk(x).

4. Compute the ratio of actual-to-predicted improvement :

ρk :=
f (xk)− f (xmin)

mk(xk)−mk(xmin)
.

If ρk is sufficiently large, accept xmin as the next point (i.e.
xk+1←xmin), otherwise don't move (xk+1←xk)

5. If ρk is sufficiently large, increase the next trust region, if it is
too small then shrink it. With Uk as above, this step usually
amounts to scaling the radius, i.e. Δk+1=εkΔk with the scaling
factor εk depending on ρk.

Figure 1. Trust Region Optimiza-
tion. Four steps of a trust region algo-
rithm with a quadratic model; from lest
to right, top to bottom. The true objec-
tive is not shown. In the first step ρ0
is sufficiently large, so xmin is accepted
and the trust region increased. Same for
the second step. In the third step the
trust region is too large, the model is
not a good approximation of the objec-
tive and as consequence ρ2 is not large
enough. Therefore, the update of x2
is rejected and instead the trust region
is decreased, giving a different xmin,
which now can be accepted. Images
taken from [CGT00].

6. Increment k by 1 and go to step 1.

Figure 1 illustrates this scheme with the contour lines of a quadratic
approximation of the true objective shown at several steps.

2 Update rules of trust region methods

Let us ignore steps 4 and 5 from the above algorithm for a moment
and analyze what kind of update rules we obtain from different trust
region constraints. With a linear model

mxk
linear(x)= f (xk)+ (x −xk)⊤ ⋅ ∇f (xk), (2)

and a trust region Uk :=�x: 12 ‖x −xk‖
2
�δ 2� we have the update rule

xk+1=xk−δ
∇f (xk)
‖∇f (xk)‖

.

This update is commonly known as normalized gradient descent .

Natural, Trust Region and Proximal Policy Optimization 3



Using the quadratic approximation (1) as model with the same con-
straint as above we obtain the rule:

xk+1=xk− (Hk +λ)−1∇f (xk),

where λ is the Lagrange multiplier of the constraint. This update
rule is the essence of the widely used Levenberg-Marquardt algorithm
[Mar63].

A Euclidian sphere in the parameter space ℝN typically does not
reflect the geometry relevant for the optimization problem. Some
problem-specific distance on ℝN might do a better job in specifying
what it means for x to be too far away from xk. A particularly simple
and useful choice is osten a suitable symmetric and positive-definite
matrix F (xk), which could be e.g. a metric tensor induced by some
distance function. The trust region constraint then becomes

1
2 (x −xk)

⊤ F (xk) (x −xk)�δ 2, (3)

and the update rule from the linear model (2) takes the form

xk+1=xk −Dk∇f (xk), (4)

where

Dk :=
δ

∇f ⊤(xk)F −1(xk)∇f (xk)�
F −1(xk).

An interesting choice for F is the Hessian Hk of f at xk, which essen-
tially means that distances between x and xk are measured in units
of the curvature of f at xk. Then the update rule (4) corresponds to a
variant of the damped Newton method. As an alternative for the full
Hessian, one could use only the diagonal components of Hk for setting
up the constraint, i.e. Fk := diag(Hk) (a choice that is supported by
heuristics). Then, using a trust region of the form (3) together with the
second order model (1) results in Fletcher's modification of the Leven-
berg-Marquardt update rule [Fle71]:

xk+1=xk− [Hk +λdiag(Hk)]−1∇f (xk).

Using linear or quadratic approximations with different trust region
constraints gives rise to many of the standard optimization algorithms
that are commonly used in practice. As we will see below, several
improvements of the naive policy gradient algorithm in reinforcement
learning are based on exactly the same ideas that we highlighted in
this section.

4 Michael Panchenko



3 Notation and the RL objective

In all that follows we will consider an infinite horizonMarkov decision
process with states st and actions at . For notational simplicity, we 3 With some effort, the results stated can be

transferred to continuous spaces.
assume that state and action spaces are discrete.3 Here we are in the
context of model-free reinforcement learning and we want to find a
policy from a family of functions {πθ: θ ∈ℝn} differentiable wrt. their
parameters. The goal is to find the θ maximizing the expected sum
of discounted rewards

ηπθ=𝔼πθ[[[[[[[[[[[[�
t=0

∞
γ t r(st ,at)]]]]]]]]]]]]. (5)

In what follows, we will osten omit the subscript θ when it is clear
which policy is meant, or if a statement applies to any policy π . We
write πk for πθk.

We assume stochastic transition dynamics and, for notational sim- 4 This is not to be confused with the usual nota-
tion of τ for the distribution of trajectories.

plicity, denote by τt the conditional distribution of st+1|at , st .4 The
value, Q and advantage functions are defined as

Vπ(st) = 𝔼π[[[[[[[[[[[[�
k=0

∞
γ k r(st+k)]]]]]]]]]]]]

= r(st)+γ 𝔼at∼π(st)[𝔼τt[Vπ(st+1)]],

Qπ(st ,at)= r(st)+γ 𝔼τt[Vπ(st+1)],

and

Aπ(st ,at)=Qπ(st ,at)−Vπ(st).

From these definitions directly follows:

Vπ(st) = 𝔼at∼π(st)[Q(st ,at)],
0 = 𝔼at∼π(st)[Aπ(st ,at)],

(6)

and

Aπ(st ,at) = r(st)+γ 𝔼τt[Vπ(st+1)] (7)
−Vπ(st).

3.1 Approximating the objective

As explained in Section 1, before we start the optimization at each step 5 In the literature referenced, the notation θold
is used instead of θk.k we need a local model around θk for the full objective (5).5 We will

use the following approximation to ηπ:

mk(θ) :=ηπk+�
s
ρπk(s)𝔼a∼πk(s)[[[[[[πθ(a|s)πk(a|s)

Aπk(a, s)]]]]]], (8)

Natural, Trust Region and Proximal Policy Optimization 5



where

ρπ(s) :=�
t=0

∞
γ t ℙπ(st = s) (9)

is the (un-normalized) discounted state density, with s0∼ρ0 for some
6 If there is a discount factor γ<1, the state

density is not a probability distribution since
∑sρπ(s)=

1
1−γ . If no discount factor is used,

ρπ usually denotes the stationary distribu-
tion of states aster following π for a long

time, which is assumed to exist. I.e. ρπ(s) :=
lim

T→∞
1
T ∑t=0

T ℙπ(st = s). This is a proper prob-

ability distribution. In the RL literature one can
osten find expressions of the type 𝔼ρπ(s)[f (s)],
which should be interpreted as ∑sρπ(s)f (s),
even when a discount factor is present and ρπ

is not properly normalized.

initial state distribution ρ0.6 Due to the vanishing expectation of the
advantage function (6), we immediately see that

mk(θk)=ηπk.

Moreover:

∇mk(θk)=𝔼πθ[∇ logπθk(a|s)Qπk(a, s)],

which is a well-known expression for the policy gradient [SMSM99].
Therefore, (8) is a first order approximation to ηπθ around θk.
With a slight abuse of notation, in modern literature (including the

PPO paper [SWD+17]) equation (8) is usually written as

mk(θ) :=ηπk+𝔼πk[[[[[[πθ(a|s)πk(a|s)
Aπk(a, s)]]]]]].

4 Natural gradients, TRPO and PPO

With the very basic definitions that we have set up above, we can
already make a lightning summary of the results of three important
papers in RL. All one has to do is to combine ideas from trust region
optimization with the objective/model (8).
Since policies are probability distributions, a natural notion of dis-

7 One reason for the “naturality” of KL-diver-
gence for constraints is its information-theo-
retic interpretation. Note that it also forms
an upper bound of the total variation diver-

gence δ through Pinsker's inequality δ(P ,Q)≤
/12DKL�P ‖Q�� , where P ,Q are arbitrary prob-
ability distributions. However, arguably the
main reason that makes it natural is that its
second derivative (for distributions from a

parametrized function family), the Fisher infor-
mation matrix that we use below to formulate
trust-region constraints, gives a metric tensor
on the corresponding space of probability dis-
tributions. This means that distances between
policies measured according to the Fisher infor-
mation are parametrization invariant. This line
of thought was used in the paper that originally
introduced natural gradients for RL [Kak01].

tance for them is given by the KL-divergence.7 Even though it is not
symmetric and therefore cannot really be understood as a proper dis-
tance, its second order approximation is the positive definite Fisher
information matrix which can be used as a metric tensor for con-
structing the constraint

DKL(πk(⋅|s),πθ(⋅|s))≈
1
2 (θ −θk)

⊤ F (θk, s) (θ −θk),
with

F (θk, s)i, j =
∂2

∂θi ∂θj
DKL(πk(⋅|s),πθ(⋅|s)).

Thus, a natural bound for πθ not being too far from πk is to demand
that on average the second order approximation of the KL-divergence
of πθ and πk is smaller than some radius δ , resulting in the trust region
constraint

1
2 (θ −θk)

⊤𝔼πk[F (θk, s)](θ −θk)�δ . (10)

6 Michael Panchenko



This is a constraint of the type (3) which hence results in the following
8 Originally, the trust region approach based on
(an approximation of) the KL-divergence was
motivated in a different way. One can prove
that optimizing a certain surrogate objective
with the KL-divergence as penalty results in
guaranteed monotonous improvement in the
expected sum of rewards. See Section 5 for
more details.

instantiation of the update rule (4):8

θ =θk−Dk∇mk(θk), (11)

with

Dk :=
δ

∇mk
T(θk) F̄ −1(θk)∇mk(θk)�

F̄ −1,

where F̄ is the average Fisher information:

F̄ (θ) :=𝔼πθ[F (θ , s)] . (12)

4.1 Natural Gradient and TRPO

In the paper that introduced the natural gradient for RL [Kak01], the
above update rule was implemented with a fixed step size multiplying
the update direction F̄ −1(θk) ⋅∇mk(θk) instead of the adaptive step size
coming from the constraint. This choice was already an improvement
over the naive policy gradient. The only practical difference between
the method introduced in the trust region policy optimization paper
[SLA+15] and natural gradient is that the constraint (10) is taken more
strictly in TRPO (it will actually be fulfilled with each update) and the
step size is not fixed.

The reader might have noticed that in all considerations above we
kept silently ignoring a crucial element of the general trust region
optimization algorithm - namely the possibility to reject an update and
to adjust the trust region based on differences between predicted and
actual improvement, steps 4 and 5 in algorithm (2). Indeed, the nat-
ural gradient completely foregoes these steps, which is precisely why
it performs worse than TRPO. However, what about TRPO itself - is
there any rejection of points and region adjustment happening? In fact,
nothing of the like is mentioned in the paper's main text. However, in
Appendix C, where the implementation details are described, it is men-
tioned that a backtracking line search is performed in the direction
F̄ −1(θk) ⋅ ∇mk(θk), starting from the maximal step size δ

∇mk F̄−1∇mk�
,

until a sufficient increase in the objective is observed. This proce-
dure can be understood as a way of rejecting updates and reducing the
trust region if the true increase is too small. The authors also say that
without such a line search, from time to time the algorithmwould take
too large steps with catastrophic drops in performance. Such behavior
is known to happen in trust region algorithms where the region is
never adjusted, see [CGT00]. Although part of the general specifica-
tion of a trust region algorithm is still not applied in TRPO - namely

Natural, Trust Region and Proximal Policy Optimization 7



comparing predicted and actual improvements and possibly extending
the trust region, not just shrinking it, by following algorithm (2) more
closely than the fixed-size natural gradient updates, the authors of
TRPO introduced a very popular and robust state-of-the-art (at that

9 From the point of view presented here, it
seems natural to wonder whether by following
the general trust region approach even more

closely and adjusting the trust region based on
the same criteria as described in it, the perfor-
mance would increase even more (see chapter
6 in [CGT00] for a slightly stricter but less gen-
eral specification of the trust region algorithm).

time) policy optimization algorithm.9

4.2 Proximal Policy Optimization

The observation that trust region extension and shrinking were not
fully applied in TRPO but some version of them was still needed to
prevent catastrophic collapse brings us to the next improvement upon
TRPO - proximal policy optimization (PPO) [SWD+17]. The main idea
here is the following: all we really care about is optimizing the model
(8) without taking too large steps in policy space. While using the
KL divergence is a natural choice for bounding deviations of general
probability distributions, one could make an evenmore suitable choice
that is specific to the actual model of the objective. In the PPO paper
this choice can be phrased as following: the new policy is only allowed
to improve upon the old one by staying close to it in a pointwise,
objective-specific sense, specified in equation (13) below. It is, how-
ever, allowed to make large steps in θ which decrease the expected
sum of rewards. This approach is different from the KL-based con-
straint which is indifferent to whether deviations in a policy lead to an
improvement or not. Moreover, the KL-based constraint is based on
differences of policies as a whole (as probability distributions), allowing
for large pointwise differences.

Denoting

rθ(a, s) :=
πθ(a|s)
πk(a|s)

,

the quantity that is to be maximized at the k-th iteration is:

𝔼πk[rθ(a, s)Aπk(a, s)].

The PPO idea for restricting steps results in the following recipe, for
some (small) ϵ >0 that is chosen as hyperparameter:

• If Aπk(a, s) > 0, then we don't allow rθ(a, s) to become larger
than 1+ ϵ .

• If Aπk(a, s) < 0, then rθ(a, s) should not become smaller then
1− ϵ .

A very similar behavior can also be implemented as trust-region con-
straints on θ of the form

sign(Aπk(a, s))(rθ(a, s)−1)� ϵ , (13)

8 Michael Panchenko



where we would have one constraint for each (a, s). However, in the
PPO paper these conditions were not included as constraints but rather
the objective itself was modified to

mk
PPO(θ) :=ηπk+𝔼πk,t[min(rθAπk , clip(rθ Aπk))], (14)

where the clip function clips r to 1± ϵ based on the sign of Aπk if it is
too large or too small. To first order this coincides with the previous
model (8) used in natural gradients and TRPO. Note that improvements
to the objective due to policies too far from πk are cut off, meaning
that mk

PPO(θ)�mk(θ). Therefore, the clipped objective can be under-
stood as a minorant for the unclipped one. Thus, schematically PPO

m(θ)
mclip(θ)

θk θ

Figure 2. Constraining vs. clipping.
Maximizing m w.r.t. the constraint
(highlighted region) is almost equiva-
lent to maximizing the clipped objective
mclip without any constraints by gra-
dient methods, starting from θk and
making small steps. As soon as θ moves
into the constrained region, ∇mclip(θ)
vanishes, so e.g. for gradient ascent
with step size α , one would violate
the constraint by at most α ∇m(θ ∗),
with θ ∗ being the penultimate value
before convergence of gradient ascent
(i.e. sufficiently close to the constraint
boundary).

algorithms take the form:

Algorithm 3
PPO-style optimization

1. Unroll the current policy πk in order to estimate

𝔼πk,t[min (rθAπk , clip(rθ Aπk))]

This may involve batching and different strategies for esti-
mating advantages.

2. Run gradient ascent in θ in order to maximize the objective
obtained in the previous step, thereby obtaining θmax.

3. Set θk← θmax and repeat from step 1.

From a practical point of view, optimizing the original objective (8)
with a sufficiently expressive policy πθ and gradient methods while
satisfying the constraints (13) is essentially equivalent to optimizing
the clipped objective (14), meaning that PPO can be viewed as a trust-
region optimization as well. Figure 2 can be helpful to understand this
statement.

Optimizing the clipped objective will occasionally lead to slight vio-
lations of the constraints. This is because the clipped objective only
discourages going into the constrained region and does not strictly
enforce it. One can view the clipping strategy as a computationally

10 To the author's knowledge, the point of
view that clipping the objective for gradient-
based optimization is essentially equivalent to
imposing trust-region constraints, albeit not the
same ones as in the TRPO paper, has not been
mentioned in the literature. This perspective
allows for a more straightforward comparison
of PPO and other approaches.

efficient way to deal with constraints of the type (13).10

PPO is much simpler than TRPO both conceptually and in implemen-
tation, while osten equaling or outperforming the latter. Intuitively,
this might be due to the much more RL-specific constraints (13) on
the steps in θ , compared to the general-purpose KL-divergence based
constraint (10). Again, as in previous algorithms, adjustments to the
trust region based on predicted vs. actual improvements do not form
part of the PPO algorithm and one might reasonably speculate that
adjusting ϵ based on such criteria could lead to further improvements
of performance.

Natural, Trust Region and Proximal Policy Optimization 9



5 TRPO from monotonous improvement

The derivation of the TRPO update rule (11) in the original paper
[SLA+15] was based on quite a different line of thought from the one
presented in Section 4 above. The constraint in average Fisher infor-
mation (10) was motivated by a proof of monotonic improvement of ηπ
from optimization of a surrogate objective where the KL-divergence
is used as penalty. We will give a brief overview of the ideas and cal-
culations that form the backbone of the original paper.

The following useful identity expresses the rewards of one policy π̃
in terms of expectation of advantages of another policy π :

ηπ̃ =ηπ +𝔼π̃[[[[[[[[[[[[�
t=0

∞
γ tAπ(st ,at)]]]]]]]]]]]]. (15)

This can be easily proved by observing that

𝔼st ,at∼π̃𝔼τt[Vπ(st+1)]=𝔼π̃[Vπ(st+1)],

and using the telescopic nature of the sum ∑t=0
∞ γ tAπ(st , at). Aster

some computation, equation (15) can be rewritten in state space as:

ηπ̃ =ηπ +�
s
ρπ̃(s)𝔼a∼π̃(s)[Aπ(s,a)].

One might expect that the state distribution ρπ does not change too
quickly when π is smoothly varied, since even if different actions
are taken, the unchanged system dynamics should smooth out the
behavior of ρπ. This intuition is useful for finding good approxima-
tions: replacing ρπ̃ by ρπ in the above expression gives a first order
approximation to ηπ̃, namely exactly themodelmπ(π̃) (8) that we have
already used above (where we have also shown that it is truly a first

11 In the TRPO paper this model is called Lπ . order approximation).11Now onewould hope that finding a new policy
π that improves the approximation given by mπ could guarantee an
improvement in ηπ̃, as long as the improved policy π stays within a
sufficiently small region around π̃ . Since the KL-divergence gives a
way of measuring proximity of distributions, it is maybe not too sur-
prising that such a bound can be derived using it. One of the central
results of the TRPO paper is the following relation:

ηπ̃ �mπ(π̃)−CDKL
max(π , π̃),

where C is a constant depending on π and γ and

DKL
max(π , π̃)=max

s
[DKL(π(⋅|s), π̃(⋅|))].

10 Michael Panchenko



Thus, optimizing mπ(π̃) −CDKL
max(π , π̃) w.r.t. π̃ leads to guaranteed

improvement in the objective. The term CDKL
max(π , π̃) acts as a penalty

for moving π̃ too far from π . Now, in practice this penalty leads to too
small steps and DKL

max is difficult to estimate. Therefore, the authors
propose to replaceDKL

max by the average KL-divergence and to incorpo-
rate the requirement to stay close to π in KL-divergence as constraint
rather than as penalty. This argumentation leads to the trust-region
algorithm that we presented in Section 4.1.

6 Conclusion

The TRPO and PPO papers achieved significant improvements to
existing RL optimization methods. The core ideas in both can be sum-
marized as: optimize the discounted sum of rewards through steps
that don't bring you too far away from the previous policy by either
enforcing constraints or modifying the objective in a smart way.

While naive policy gradient formulates “too far away” as keeping the
update in parameter space Δθ =θ −θk small, in TRPO “too far away” is
formulated in a more natural sense for maps from states to probability
distributions, i.e. using an approximation to average KL divergence,
(12). In PPO “too far away” is defined in an intrinsically RL-like way:
by not allowing the approximation to improve the expected sum of
advantages through point-wise constraints on π(a|s) over all states
and actions (equations (13) and (14)). Many of these ideas seem very
natural from the point of view of optimization theory [Nes04], espe-
cially of trust region methods [CGT00, NW06].

BIBLIOGRAPHY

[CGT00] Andrew R. Conn, Nicholas I. M. Gould, and Philippe L. Toint. Trust Region
Methods. Society for Industrial and Applied Mathematics, jan 2000.

[Fle71] R Fletcher. A modified Marquardt subroutine for nonlinear least squares.
Technical Report, Atomic Energy Research Establishment, Harwell, Berskshire,
1971.

[Kak01] Sham M. Kakade. A Natural Policy Gradient. Advances in Neural Informa-
tion Processing Systems, 14, 2001.

[Mar63] Donald W. Marquardt. An Algorithm for Least-Squares Estimation of Non-
linear Parameters. Journal of the Society for Industrial and Applied Mathematics,
11(2):431–441, jun 1963.

[Nes04] Yurii Nesterov. Nonlinear Optimization. In Yurii Nesterov, editor, Intro-
ductory Lectures on Convex Optimization: A Basic Course, Applied Optimization,
pages 1–50. Springer US, Boston, MA, 2004.

[NW06] Jorge Nocedal and S. Wright. Numerical Optimization. Springer Series in
Operations Research and Financial Engineering. Springer-Verlag, New York,
Second edition, 2006.

[SLA+15] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp
Moritz. Trust Region Policy Optimization. In International Conference onMachine
Learning, pages 1889–1897. PMLR, jun 2015.

[SMSM99] Richard S. Sutton, DavidMcAllester, Satinder Singh, and YishayMansour.
Policy Gradient Methods for Reinforcement Learning with Function Approxi-
mation. Advances in Neural Information Processing Systems, 12, 1999.

Natural, Trust Region and Proximal Policy Optimization 11



[SWD+17] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg
Klimov. Proximal Policy Optimization Algorithms. ArXiv:1707.06347 [cs], aug
2017.

12 Michael Panchenko


	1 Trust region methods
	2 Update rules of trust region methods
	3 Notation and the RL objective
	3.1 Approximating the objective

	4 Natural gradients, TRPO and PPO
	4.1 Natural Gradient and TRPO
	4.2 Proximal Policy Optimization

	5 TRPO from monotonous improvement
	6 Conclusion
	Bibliography

