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In Cross-validation: what does it estimate and how well does it do it? Bates
et al. focus on cross validation for error estimation and show in detail that
it approximates a different error than the one typically of interest in applica-
tions. The authors prove this for a class of linear models, then introduce a nested
procedure which targets the quantity of interest for practitioners, and leads to
tighter variance estimates and confidence intervals.
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A supervised machine learning application predicts values Y ∈𝒴 from
values X ∈𝒳 , by fitting a function f̂ in some model class ℱ , using
data D :={(Xi,Yi)}i=1n . A learning algorithm 𝒜 maps D↦ f̂ = f̂D. Now,
given f̂D and a loss function l:𝒳 ×𝒴→ℝ+, one wishes to estimate its
expected prediction error

Err( f̂ ) :=𝔼[l( f̂D(X ),Y )], (1)

but here one must be careful with the meaning of the expectation.
The function f̂D itself is random, being the image by 𝒜 of a random
quantity, f̂D =𝒜(D), so the above spelled out is:

Err( f̂ )=𝔼D∼ℙX ,Y
n [𝔼X ,Y[l( f̂D(X ),Y )|D]].

To be more precise, Err( f̂ ) is a function of the tuple (𝒜 , l,n, ℙXY). It
is the expected error on future test points, when training on any data

1 The number of samples matters:
estimators using subsets of the data,
e.g. K-fold cross-validation, will be
biased for the errors of algorithms
trained on data sets of full size n.

set of size n drawn i.i.d. from the same distribution.1 This quantity is
of interest e.g. when designing learning algorithms, but it is not what
a practitioner usually wants. Instead, for applications one is interested
in the error that some specific f̂D, trained on a fixed dataset D = {(xi,
yi)}i=1n , will incurr when deployed on unseen data, or what is usually
called generalization error or prediction error:

ErrXY( f̂ ) :=𝔼X ,Y[l( f̂ (X ),Y )|D] (2)

(here and in the sequel we will ommit the subindex in f̂D, as well as the
dependency on 𝒜 ,n, l and the distribution of X ,Y for brevity). Note



that we assume f̂D to be the outcome of a model fitting procedure, and
not of model selection. More on this below.

Because the true distribution for X , Y is unknown, estimates for
these quantities are required. Most methods can be roughly classified
as resampling based or analytic, see Figure 1. Here we focus on CV,
but the results of Section 2 extend to most of them (for linear models).

Figure 1. Common approaches to
the estimation of different predic-

tion errors.
Error estimates

resampling

Jackknife Bootstrap Cross-validation

analytical

Mallow's Cp AIC BIC Cov. penalties

1 A note on model selection

It is important to note that we are always assuming that no model
selection procedure is performed using the training data, i.e. no feature
selection, hyperparameter tuning nor selection of an imputation pro-
cedure. Otherwise, there would be correlations between the selected
model, which is a random variable itself, and any statistics used in
inference later, e.g. confidence intervals, hypothesis tests or error

2 Consider a regression problem in
which the data is used to do feature

selection. Intuitively, in a significance
test for the chosen variables, these are
necessarily going to be significant for
the data that was used to select them

in the first place.

estimates.2 Additionally, it is well known that the CV estimate of the
error of the model chosen by a selection procedure is strongly biased
downwards, because the statistics of the extreme value min {Err1, . . . ,
Errk} are different from those of the Errj.

The simplest approach for simultaneous model selection and error
estimation is a simple train - test split of the data. But this comes at
cost of both bias and variance because of the reduced data on which the
models are chosen and the winner finally evaluated. If computational
resources allow for it, it is common to use a nested CV procedure,
which has great computational cost, and for which there are no known
theoretical guarantees. There is some work attempting to debias the
minimum in [TT09], and more recently [Gua18], as well as a growing
body of research on valid post-selection inference for specific algorithms
which enable inference at lower computational cost, and with guar-

3 Post-selection inference refers to
a set of techniques enabling statistical
inference (e.g. computing confidence
intervals) aster doing model selection

using the data.

antees.3 More on these topics will follow on our website.

We focus then on CV for error estimation, but what error are we
talking about?

2 What cross validation estimates

K-fold CV first splits D into equally sized subsets Ij, j ∈ {1, . . . ,K}. We
assume that K divides n for simplicity, and write i ∈ Ij for (xi,yi)∈ Ij.
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Then it trains a function f̂ (−j) on all but Ij, and evaluates it on Ij with:

CVj( f̂ ) :=
K
n �
i∈Ij

l� f̂ (−j)(xi),yi�.

The CV error is:

Errcv( f̂ ) := 1
K �

j=1

K

CVj( f̂ ). (3)

A subtle question is what exactly does Errcv estimate, and the widely
accepted answer for over two decades is that it is Err and not ErrXY .
Intuitively, CVj, the inner sum in (3), is an estimate for ErrXY for fixed
Ij, and the outer sum estimates Err, with the Ij being different samples

4 The estimate for Err is for data sets
of size n−n/K , and typically slightly
biased upwards for data sets of size n.from the data set distribution.4 Despite this being known, detailed ana-

lyses of the mismatch between Errcv and ErrXY have been lacking, and
one of the results of this paper is a rigorous treatment of this ques-
tion in the linear case. Specifically, they show that CV for a certain
type of problem has the property that Errcv is independent of ErrXY
given X [BHT21, Theorem 1]. In other words:

5 Linear Gaussian with constant noise
variance, fitted with squared loss.

THEOREM 1. For certain model classes,5 given two datasets D = {(Xi,
Yi)}i=1n ,D ʹ = {(Xi,Yiʹ)}i=1n sampled from the same distribution and with
the same feature matrix X, and ErrXY and ErrXY ʹ being the true errors
and ErrXYcv and ErrXY ʹ

cv their CV estimates, one has:

(ErrXY , ErrXYcv )=
d
(ErrXY , ErrXY ʹ

cv ).

«This means that for the purpose of estimating ErrXY,
we have no reason to prefer using the cross-validation
estimate with (X , Y ) to using the cross-validation
estimate with a different data set (X ,Y ʹ), even though
we wish to estimate the error of the model fit on (X ,Y )»

The consequence derived from this is that Errcv is a better estimate
of an intermediate quantity ErrX than of ErrXY .

COROLLARY 2. Under the conditions of Theorem 1,

𝔼[(Errcv−ErrXY)2]�𝔼[(Errcv−ErrX)2],

where ErrX :=𝔼Y[ErrXY |X ].

Cross-validation: what does it estimate? 3
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Figure 2. [BHT21, Figure 3]. Lest: mean squared error of the CV point estimate of prediction error relative to three
different estimands: Err, ErrX , and ErrXY . Center: coverage of Err, ErrX , and ErrXY by the naive cross-validation inter-
vals in a homoskedastic Gaussian linear model. The nominal miscoverage rate is 10%. Each pair of points connected by
a line represents 2000 replicates with the same feature matrix X . Right: 2000 replicates with the same feature matrix
and the line of best fit (blue).

Finally, two additional corollaries yield the conclusions of the whole
6 These results hold only for a linear
problem with no regularization. The

authors expect CV to be closer
to ErrXY when regularization is

applied.

section, namely:6

• Errcv is uncorrelated with ErrXY , in a certain asymptotic sense.

• CV has larger error for estimating ErrXY than for estim-
ating Err or ErrX .

Other estimators. The theory developed in Sections 2 and 3 of the
paper applies not only to CV but to other methods as well: data split-
ting with refitting (train on one half of the data, evaluate on the other,
then refit on the whole data set), Mallow's Cp and bootstrap.

3 Computing standard errors

Besides a point estimate for the error one always wants an indication
of the trust that can be placed in it, i.e. a confidence interval. In order
to do so, an estimate of the standard error is required. For applications
one wants a confidence interval for ErrXY and for algorithm design
or benchmarking, one for Err. Note that even if Err = 𝔼[ErrXY] and
Errcv is (almost) unbiased for Err, whether it estimates one or the other
matters for what it is that its sampling variance informs us about.

Let ei := l�f
(−Ij(i))(Xi),Yi� be the error for sampleXi,Yi when trained

on the K −1 folds not containing it. Then

Var(Errcv)=Var((((((((((((
1
n �
i=1

n

ei))))))))))))≈
1
n e1, (4)
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where equality would hold only if the ei where i.i.d. So the sample
estimate for the standard error of the point estimate Errcv is:

secv= 1
n√

1
n−1 �

i=1

n

(ei −Errcv)2� . (5)

With this, the standard confidence interval would be

(Errcv−z1−α/2 secv, Errcv+z1−α/2 secv). (6)

where z1−α/2 is the 1 −α /2 quantile of the standard normal distribu-
7 Because in (4) we assumed that the
eiwere (roughly) independent, ErrCV

is asymptotically normal by the CLT
and this confidence interval is the nat-
ural one.

tion, e.g. 1.96 for a 95% CI.7

However, since every point inD is used both for training and testing,
the independence assumption in (4) does not hold and the closer K
is to its maximum n, the higher the correlations will be, hence the
total true variance. Any confidence interval built using (4) and (5) will
be too small and have poor coverage.

Even if one does not do CV, but is in the optimal situation of having
K independent training sets and L independent test sets, because for
each of the training sets many errors will be computed, these errors
will not be conditionally independent, given one training set. This
will make the naive estimate (5) too optimistic. In the extreme case
of leave-one-out CV, every sample is used n times for training and
testing, leading to even higher sampling variance.

This was shown in the fundamental paper [BG04], where the main
result was a proof that any estimate of the variance of CV is biased and
the nature of the bias is neither determined by the number of folds nor
the sample size. The key is the structure of the covariance matrix of
the errors ei, see Figure 3. [BG04] show that it is only parametrised by
three numbers,

Var(Errcv) = 1
n2

�
i, j=1

n

Cov(ei, ej)

= 1
n σ

2+� 1
K − 1

n�ω+�1− 1
K�γ , (7)

Figure 3. [BHT21, Figure 7]. «Covari-
ance structure of the CV errors. Red
entries correspond to the covariance
between points in the same fold, and
blue entries correspond to the covari-
ance between points in different folds.»

where σ 2 is the variance of ei when D has size n − n /K , ω is the
in-block covariance of errors due to a common training set, and γ
is the between-blocks covariance due to the dependence between
training sets Ik. Note how increasing K deteriorates the third term,
and increasing n the second one. There are no constraints as to how
ω and γ behave, other than being at most |σ 2|, and in practice both
are seen to be positive. Therefore, typically

Var(Errcv)> 1
n Var(e1),

Cross-validation: what does it estimate? 5



and (5) will underestimate the standard error. Furthermore, γ is seen
to be of order σ 2, especially in the presence of outliers, irrespective of
the number of folds [BG04, Section 7], see Figure 4. So using (6) for
decisions is fraught with dangers in practical cases.
In order to address the issue, one must then either modify CV with

new sampling / splitting schemes, or add distributional assumptions.
Recent work has proposed splitting the data in half, then doing CV in
different variants, but this typically proves to be either too costly or
too conservative in the estimates. Instead, [BHT21] modify CV with a
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Figure 4. [BG04] Figure 5b. contribu-
tions of σ 2, ω and γ to Var(ErrCV) vs
number of folds K , in the presence of
outliers.

nested procedure.

The definition of se. In practice, instead of (5), another rougher
approximation is typically done. Once the K values CVj( f̂ ) have been
computed, one can argue that

Var(Errcv) = Var(((((((((((((((
( 1
K �

j=1

K

CVj( f̂ ))))))))))))))))
)

≈ 1
K Var(CVj( f̂ )), (8)

where equality would hold if the CVj where i.i.d. The sample estimate
Equation (9) is just

scores.std()/sqrt(K)
for the standard error is

secv= 1
K�

1
K −1 �

j=1

K

(CVj −Errcv)2� , (9)

and the standard confidence interval:

(Errcv−z1−α /2 secv, Errcv+z1−α/2 secv). (10)

Now, this is a different interval than (6) and given the relatively low
value of K , the normality assumption is less justified than before. But,
crucially it has the same problem of not taking dependencies into
account and therefore having necessarily poor coverage.

4 Nested cross validation

A word on nomenclature. Nested CV
is typically used in machine learning

for simultaneous model selection
and error estimation, as suggested in
[VS06]. This is not what is done here.

As we explained above, the problem with the confidence interval (6) is
that the true variance of Errcv is higher than the one in (5) because of
correlations in the errors introduced by using samples both for training
and testing. In the naive approximation, one assumes that ω =0 and
γ = 0 in (7), but we have seen in Figure 4 that in particular the cov-
ariances γ arising from dependencies across folds, can be of the same
magnitude as the variance σ 2.
The goal of the authors is to estimate the Mean Squared Error of CV:

MSEK ,n :=𝔼[(Errcv−ErrXY)2],

6 Miguel de Benito Delgado



which because of the usual bias - variance decomposition and the low
bias of Errcv is a reasonable (and conservative) proxy for Var(Errcv).
Note that despite the results of Section 2, the authors pick MSE wrt.
ErrXY . This is both because of technical reasons, and the fact that
ErrXY is what typically matters for practical applications.

In order to introduce the algorithm we consider first a single split
of the data into Dtrain = {(Xi,Yi)}i∈Itrain and Dout = {(Xi,Yi)}i∈Iout. For
i ∈ Itrain we write (X̃i, Ỹi)= (Xi,Yi) and f̂ is obtained aster training on
Dtrain. Exactly as in (2) we define, considering Dtrain as a r.v.

ErrX̃Ỹ( f̂ ) :=𝔼X ,Y[l( f̂ (X ),Y )|Dtrain],

and the key is then the following decomposition, for any estimate
ErrX̃Ỹ of this quantity, which is obtained only using Dtrain:

LEMMA 3. ([BHT21, HOLDOUT MSE])

𝔼Dtrain[(ErrX̃Ỹ −ErrX̃Ỹ)
2] = 𝔼D[(ErrX̃Ỹ − eout)

2]
(a)

− 𝔼D[(eout−ErrX̃Ỹ)
2]

(b)

.

It is possible to estimate (a) and (b) without bias, hence the lest
hand side as well.

Algorithm [BHT21, Nested Cross Validation]

1. SplitD intoK folds with K −1 buildingDtrain and the remaining
one being Dout, with indices Iout.

2. For each split j:

a. Compute εj :=ein=ErrX̃Ỹ with (K −2)-fold CV over the K−1
folds in Dtrain.

b. Train model on Dtrain. Compute errors ei for all samples
(xi,yi)∈Dout.

c. Compute eout :=mean of {ei}i∈Iout.

d. Set aj := (ErrX̃Ỹ −eout)
2 (estimate of (a)).

e. Set bj := empirical variance of {ei}i∈Iout (estimate of (b)).

3. Output MSE :=mean(aj)−mean(bj).

4. Output Errncv :=mean(εj).

The key result is that Algorithm 3 is a good approximation of the
MSE of CV (for a smaller sample size):

Cross-validation: what does it estimate? 7



THEOREM 4. ([BHT21, ESTIMAND OF NESTED CV]) For a nested CV
with a sample of size n,

𝔼[MSE]=MSEK−1,n−n/K .

As noted before, the fact that estimation happens on K − 1 folds
introduces some bias for the actual quantity of interest MSEK ,n. One
can rescale MSE with the factor K −1

K , although is just a heuristic with
no theoretical guarantee.

For the same reason, Errncv is unbiased for Err with data set of size
n (K − 2)/K but biased for size n. A debiasing strategy is suggested
with the estimator:

b̂ncv :=�1+ K −2
K �(Errncv−Errcv),

and finally, the confidence interval for Err becomes

(Errncv− b̂ncv−z1−α/2 sencv, Errncv− b̂ncv+z1−α/2 sencv),

with sencv := K −1
K MSE� .

On computational cost. Obviously, the amount of computation
required to produce Errncv can be orders of magnitude higher than
simple CV, depending on the number of folds. Because of the embar-
rassingly parallel nature of the problem this can be a minor issue for
applications where CV itself runs rather quickly, but makes nested
CV inpracticable when it does not.

5 Results and conclusions

The authors test Nested CV for classification and regression with syn-
thetic and real data sets. For binary classification, they use a sparse
logistic data generating process ℙ(Yi=1|Xi=xi)=σ(−xi⊤θ), for i∈{1,...,
n}, Xi ∼𝒩(0, Ip), and θ :=c (1, 1, 1, 1, 0, . . . , 0)∈ℝp, c >0 chosen to obtain

8 Aster some computation one finds
the Bayes risk to be 2∫{θ ⋅x�0}σ(−θ ⋅

x)𝒩(x; 0, Ip)dx. Solving for θ
provides the required value of c . different Bayes risks.8 These are optimal lower bounds for Err.

In the low dimensional regime (p=20,n=100), with c chosen to have
a Bayes error of 33% and an unregularized logistic regression model,
they obtain miscoverage rates for Err and ErrXY close to the nominal
values of 10%, as seen in Table 1.

Table 1. ([BHT21, Table 1,
excerpt]) Performance of cross-

validation (CV) and nested cross-
validation (NCV) for low-dim

logistic regression. «A “Hi” mis-
coverage is one where the confid-
ence interval is too large and the

point estimate falls below the
interval; conversely for a “Lo” mis-

coverage. The standard error in
each coverage estimate reported is
about 0.5%. The “Target” column
indicates the target of coverage.

The intervals are always generated
identically( . . .)»

Target Point estim. Miscoverage
CV NCV

CV NCV Hi Lo Hi Lo
ErrXY 39.6% 39% 10% 8% 5% 3%
Err ” ” 9% 8% 3% 4%

8 Miguel de Benito Delgado



Similar experiments in the high dimensional setting (n∈{90,200},p=
1000), with ℓ1 regularization shows that the intervals obtained through
NCV showmiscoverage much closer to nominal with “high” and “low”
rates of 3 to 6% each for NCV as opposed to 10 to 20% for CV.

In the linear regression setting, with p =20 and n>100 and a model
fitted with ordinary least squares, NCV provides again better coverage
than CV up to dimension around 400. From here on, both methods
perform similarly. As a matter of fact, several recent asymptotic res-
ults in the literature make it expected that the violations in coverage
vanish as n→∞ for fixed p. As a general rule of thumb, one can
expect CV to performwell when n /p is large and regularization
is used, so NCV should be used in high dimensional settings or low
data regimes.

Finally, a high dimensional sparse linear model with a lasso estim-
ator repeats the conclusions, although both methods fail at very low
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Figure 5. ([BHT21, Fig. D.2]) «Width of
nested CV intervals relative to the width
of the naive CV intervals»

sample numbers.

Further experiments with real data sets use demographic and radar
measurements again with similar results. Please see section 6 of the
paper.
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